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Abstract. We study the problem of constructing phylogenetic trees for a given set of species. The
problem is formulated as that of finding a minimum Steiner tree on n points over the Boolean hypercube
of dimension d. It is known that an optimal tree can be found in linear time [10] if the given dataset
has a perfect phylogeny, i.e. cost of the optimal phylogeny is exactly d. Moreover, if the data has a near-
perfect phylogeny, i.e. the cost of the optimal Steiner tree is d+ q, it is known [5] that an exact solution
can be found in running time which is polynomial in the number of species and d, yet exponential in q.
In this work, we give a polynomial-time algorithm (in both d and q) that finds a phylogenetic tree of cost
d+O(q2). This provides the best guarantees known—namely, a (1+ o(1))-approximation—for the case
log(d) ≪ q ≪

√
d, broadening the range of settings for which near-optimal solutions can be efficiently

found. We also discuss the motivation and reasoning for studying such additive approximations.

1 Introduction

Phylogenetics, a subfield of computational biology, aims to construct simple and accurate descriptions of
evolutionary history. These descriptions are represented as evolutionary trees for a given set of species,
each of which is represented by some set of features ([13,23]). A typical choice for these features are single
nucleotide polymorphisms (SNPs), binary indicator variables for common mutations found in DNA[14,1]; see,
for example, [5,10,3,20,21,22]. This challenging problem has attracted much attention in recent years, with
progress in studying various computational formulations of this problem ([13,18,5,10,11,3]). The problem is
often posed as that of constructing the most parsimonious tree induced by the set of species.

Formally, a phylogeny or a phylogenetic tree for a set C of n species, each represented by a string (called
taxa) of length d over a finite alphabet Σ, is an unrooted tree T = (V,E) such that C ⊆ V ⊆ Σd. Given a
distance metric µ over Σd, we define the cost of T as

∑
(u,v)∈E µ(u, v). The tree of maximum parsimony for

a dataset is the tree which minimizes this cost with respect to the Hamming metric; i.e., it is the optimum
Steiner tree for the set C under this metric.

The Steiner tree problem is known to be NP-hard in general [16], and remains NP-hard even in the
case of a binary alphabet with the metric induced by the Hamming distance [12]. Extensive recent work,
both experimental and theoretical, has focused on the binary character set with the Hamming metric
([13,5,10,11,3,23,24,9]). This version of the phylogeny problem will also be the focus of this paper.

A phylogeny is called perfect if each coordinate i ∈ [d] flips exactly once in the tree (representing a
single mutation of i amongst the set of species)1. If a dataset admits a perfect phylogeny, an optimal tree
can be constructed in polynomial time [2] (even linear time, in the case where the alphabet is binary [13]).
In this work, we investigate near perfect phylogenies – instances whose optimal phylogenetic tree has cost
d+ q, where q ≪ d. Near perfect phylogenies have been studied in theoretical ([18,5,11,9]) and experimental
settings ([24]). The work of [18,5,11,9] has given a series of randomized algorithms which find the optimal
phylogeny in running time polynomial in n and d but exponential in q. Clearly, when q = ω(log d), these
algorithms are not tractable.

⋆ This work was supported in part by the National Science Foundation under grant CCF-1116892, by an NSF
Graduate Fellowship, and by the MSR-CMU Center for Computational Thinking.

1 Without loss of generality, we may assume each coordinate flips at least once, since all coordinates on which all
species agree may be discarded up front.



An alternative approach for finding a phylogenetic tree of low cost is to use a generic Steiner tree
approximation algorithm. The best current such algorithm yields a tree of cost at most 1.39(d+ q) [8] (we
comment that the exponential size of the explicit hypercube with respect to its small representation size
requires one implement such an algorithm using techniques devised especially for the hypercube, e.g. Alon
et al. [3].) However, notice that for moderate q (e.g., for q = polylog(d)), the excess of this tree—meaning
the difference between its cost and d—may be extremely large compared to the excess q of the optimal tree.
In such cases, one would much prefer an algorithm whose excess could be written as a function of q only.

In this work, we present a randomized poly(n, d, q)-time algorithm that finds a phylogenetic tree of cost
d+O(q2).

Theorem 1 Given a set C ⊆ {0, 1}d of n terminals, such that the optimal phylogeny of C has cost d + q,
there exists a randomized poly(n, d, q)-time algorithm that finds a phylogenetic tree of cost d + O(q2) w.p.
≥ 1/2.

Note that Theorem 1 provides a substantial improvement over prior work for the case that log d ≪ q ≪
√
d.

In this range, the exact algorithms are no longer tractable, and the multiplicative approximations yield
significantly worse bounds. Alternatively, viewed as a multiplicative guarantee, in this range our tree is
within a 1 + o(1) factor of optimal. To the best of our knowledge, this is the first work to give an additive
poly-time approximation to either the phylogeny problem or any (non-trivial) setting the Steiner tree problem.
One immediate question, which remains open, is whether our results can be improved to d+o(q2) or perhaps
even to d+O(q).

The rest of the paper is organized as follows. After surveying related work in Section 1.1, we detail
notation and preliminaries in Section 2. The presentation of our algorithm is partitioned into two parts. In
Section 3, we present the algorithm for the case where no pair of coordinates is identical over all terminals
(formal definition there). In Section 4, we alter the algorithm for the simple case, in a nontrivial way, so
that the modified algorithm finds a low-cost phylogeny for any dataset. We conclude in Section 5 with a
discussion, motivating the problem of near-perfect phylogeny tree from a different perspective, and present
open problems for future research.

1.1 Related Work

As mentioned in the introduction, the problem of constructing an optimal phylogeny is NP-complete even
when restricted to binary alphabets [12]. Schwartz et al. [18] give an algorithm based on an Integer Linear
Programming (ILP) formulation to solve the multi-state problem optimally, and show experimentally the
algorithm is efficient on small instances. Perfect phylogenies (datasets which admit a tree in which any
coordinate changes exactly once) have optimal parsimony trees which can be constructed in linear time in
the binary case [10] and in polynomial time for a fixed alphabet [11]. Unfortunately, finding the perfect
phylogeny for arbitrary alphabets is NP-hard [6]. Recent work [5] gives an algorithm to construct optimal
phylogenetic trees for binary, near-perfect phylogenies (where only a small number of coordinates mutate
more than once in the optimal tree). However, the running time of the algorithm presented in their work [5]
is exponential in the number of additional mutations.

There has also been a lot of work on computing multiplicative approximations to the Steiner tree problem.
A Minimum Spanning Tree (MST) over the set of terminals achieves an approximation ratio of 2 and a long
line of work has led to the current best bound of 1.39 [25,4,19,17,26,20,15,21,22,8]. The more recent of these
papers use a result due to Borchers and Du [7] showing that an optimal Steiner tree can be approximated
to arbitrary precision using k-restricted Steiner trees.

Some of these approximations to the Steiner tree problem are not immediately extendable to the problem
of constructing phylogenetic trees. This is because the size of the vertex set for the phylogeny problem is
exponential in d (there are 2d vertices in the hypercube). If an algorithm works on an explicit representation
of the graph G defined by the hypercube, then it does not solve the phylogeny problem in polynomial time.
However, the line of work started by Robins and Zelikovsky [21,22] used the notion of k-restricted Steiner
trees, which can be efficiently implemented on the hypercube. In particular, Alon et al. [3] showed that in
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finding the optimal k-restricted component for a given set of k terminals, it is sufficient to only consider
topologies with the given k terminals at the leaves. Using this, they were able to extend that work to achieve
a 1.55 approximation ratio for the maximum parsimony problem, and a 16/9 approximation for maximum
likelihood. Byrka et al. [8] considered a new LP relaxation to the k-restricted Steiner tree problem and
achieved an approximation ratio of 1.39, which can be combined with the topological argument from Alon
et al. [3] to achieve the same ratio for phylogenies.

2 Notation and Preliminaries

Our dataset C ⊆ {0, 1}d consists of n terminals over d binary coordinates. A Steiner tree (or phylogeny)
over C consists of a tree T on the hypercube that spans C (plus possibly additional Steiner nodes), where
we label each edge e in T with the index i ∈ {1, . . . , d} of the coordinate flipped on edge e. The cost of such
a Steiner tree is the number of edges in the tree. Given a collection of datasets P = {P1, P2, . . . , Pk} ⊆ C we
define the Steiner forest problem as the problem of finding a minimal Steiner tree on every P ∈ P separately.
We refer to such collection as a partition from now on, even though it may contain a subset of the original
terminal set C.

In this work, we consider instances C whose minimum Steiner tree has cost d+ q, and think of q = o(
√
d)

(otherwise, any off-the-shelf constant approximation algorithm for the Steiner problem gives a solution of
cost ≤ d+O(q2)). We fix T to be some optimal Steiner tree. By optimality, all leaves in T must be terminals,
whereas the internal nodes of T may be either terminals or non-terminals (non-terminals are called Steiner
nodes). We define a coordinate i to be good if exactly one edge in T is labeled i, and bad if two or more edges
in T are labeled with i. We may assume all d coordinates appear in the tree, otherwise, some coordinates
in C are fixed and so the dimensionality of the problem is less than d. Therefore, at most q coordinates are
bad (each bad coordinate flips at least twice and thus adds a cost of at least 2 to the tree).

Given a coordinate i of a set of terminals P , we define an i-cut as the partition P0 = {x ∈ P : xi = 0}
and P1 = {x ∈ P : xi = 1}. We call two coordinates i 6= j interchangeable if they define the same cut. We
now present the following basic facts which are easy to verify (see [5] and our Appendix for proofs).

Fact 2

1. Let S be a set of interchangeable coordinates. Then all coordinates in S appear together in the optimal
tree T , adjacent to one another. That is, in T there are paths s.t. for each path: all of its edges are
labeled by some i ∈ S, all coordinates in S have an edge on the path, and all internal nodes on the paths
aren’t terminals and have degree 2. On these paths, any reordering the S-labeled edges yields an equivalent
optimal tree.

2. For any two good coordinates, i 6= j, one side of the i-cut is contained within one side of the j-cut.
Equivalently, there exist values bj such that all terminals on one side of the i-cut have their jth coordinate
set to bj.

3. Fix any good coordinate i and let j be a good coordinate such that all terminals on one side of the i-cut
have their j coordinate set to bj. Then both endpoints of the edge labeled i have their jth coordinate set
to bj.

4. A good coordinate i and a bad coordinate i′ cannot define the same cut.

It immediately follows from Fact 2 that for a given good coordinate i one can efficiently reconstruct the
endpoints of the edge on which i mutates, except for at most q coordinates. This leads us to the following
definition. Given i, we denote Di as the set of all coordinates that are fixed on at least one side of the i-
cut (different coordinates may be fixed on different sides), and we denote bi as the vector of the corresponding
values of the coordinates in D. The pair (Di,bi) is called the pattern of coordinate i. That set of terminals
that match the pattern of i is the set Pbi = {x ∈ P : ∀j ∈ Di, xj = bij}.
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3 A Simple Case: Each Coordinate Determines a Distinct Cut

To show the main ideas behind our algorithm, we first discuss a special case in which no two coordinates i
and j define the same cut on the terminal set C. Algorithms for constructing phylogenetic trees often make
this assumption as they preprocess C by contracting any pair of interchangeable coordinates. However, in
our case such contractions are problematic, as we discuss in the next section. So in Section 4, when we deal
with the general case, we deal with interchangeable coordinates in a non-trivial fashion.

3.1 Basic Building Blocks

We now turn to the description of our algorithm. On a high level it is motivated by the notion of maintaining
a proper partition of the terminals.

Definition 1. Call a partition P proper if the forest produced by restricting the optimal tree T to the
components P ∈ P is composed of edge disjoint trees.

Equivalently, the path in T between two nodes x and y in the same component P of P does not pass
through any node x′ in any different component P ′ of P . Clearly, our initial partition, P = {C}, is proper.
Our goal is to maintain a proper partition of the current terminals while decreasing the dimensionality of
the problem in each step. This is implemented by the two subroutines we now detail.

Pluck a Leaf and Paste a Leaf. The first subroutine works by building the optimal phylogeny bottom-up,
finding a good coordinate i adjacent to a leaf terminal t in the tree, and replacing t with its parent (t with i
flipped) in the set of terminals. Observe that if i is a good coordinate, then this removes the only occurrence
of i, leaving all terminals in our new dataset with a fixed i coordinate, thus reducing the dimensionality of
the problem by 1.

Pluck-a-leaf

input: A partition P of current terminals.
if there exists P ∈ P and x ∈ P s.t. some coordinate i is non-constant on P , but only the terminal x has xi = 0 (or
xi = 1), then:

– Set P ′ = P \ {x} ∪ {x̄i}, where x̄i is identical to x except for flipping i.
– Return x and P ′ = P \ {P} ∪ {P ′}.

else fail.

The matching subroutine to Pluck-a-leaf is Paste-a-leaf: if Pluck-a-leaf succeeds and returns
some (x,P ′), and we have found a Steiner forest for the terminals in P ′. Then Paste-a-leafmerely connects
x with x̄i by an edge labeled i, then returns the resulting forest. (We omit formal description.)

Claim 3 If P is a proper partition and Pluck-a-leaf succeeds, then P ′ is a proper partition.

Proof (Sketch). Let T [P ] be the subtree in which x resides. We claim that x is a leaf in T [P ], attached by
an edge labeled i to the rest of the terminals. If this indeed is the case, then removing i means removing a
leaf-adjacent edge from T [P ] which clearly leaves all components in the forest edge-disjoint.

Wlog x lies on the i = 0 side of the cut. If x isn’t a leaf, then at least two disjoint paths connect x to two
other terminals. Since P is proper, both these terminals are in P . This means T [P ] crosses the i-cut twice,
but then we can replace T [P ] with an even less costly tree in which i is flipped once, by projecting the path
between the two occurrences of i onto the i = 1 side.

⊓⊔
Observe that Claim 3 holds only when the underlying alphabet of the problem is binary. In particular,

for a non-binary alphabet, such x can be a non-leaf.

4



Split(i)
input: A partition P of current terminals, a coordinate i that is not constant on every component of P .

– Find a component P on which i isn’t constant. Denote the i-cut of P as (P0, P1).
– Find Pbi , the set of terminals that match the pattern of i.
– if exists some x which is the unique terminal that matches the pattern of i in one side of the cut (that is, if for

some x we have Pbi ∩ P0 = {x} or Pbi ∩ P1 = {x})
• Flip the i-th coordinate of x, and let x̄i be the resulting node.
• Add x to its side of the i-cut, add x̄i to the other side of the cut.
• Return x, x̄i and P ′ = P \ {P} ∪ {P0, P1}.

else fail.

Split and Merge. When Pluck-a-leaf can no longer find leaves to pluck, we switch to the second subroutine,
one that works by splitting the set of terminals into two disjoint sets, based on the value of the i-th coordinate.
We would like to split our set of terminals according to the i-cut, and recurse on each side separately. But,
in order to properly reconnect the two subproblems, we need to introduce the two endpoints of the i-labeled
edge to their respective sides of the i-cut. Our Split subroutine deals with one particular case in which
these endpoints are easily identified.

The matching subroutine to Split is Merge: Assume Split succeeds and returns some (x, x̄i,P ′), and
assume we have found a Steiner forest for the terminals in P ′. Then Merge merely connects x with x̄i by an
edge labeled i, then returns the resulting forest. (Again, formal description is omitted.)

Claim 4 Assume P is a proper partition. Assume Split is called on a good coordinate i s.t. the edge labeled
i in T has at least one endpoint which is a terminal. Then the returned partition P ′ is proper.

Proof (Sketch). Since P is proper, then the induced tree T [P ] is the only tree in the forest that contains
the i-labeled edge. The claim then follows from showing that x and x̄i are the two endpoints of i-labeled
edge in T [P ]. This follows from the observation that the endpoints of the i-labeled edge must both match
the pattern of i. Let u be an endpoint and wlog u belongs to the (i = 0)-side of the cut. On all coordinates
that are fixed on the (i = 0)-side, u obviously has the right values. All coordinates that are fixed on the
(i = 1)-side can only flip on the (i = 0)-side, but only after traversing u, so u has them set to the value fixed
on the (i = 1)-side.

⊓⊔

3.2 The Algorithm

We can now introduce our algorithm.

input: A partition P of current terminals. Initially, P is the singleton set P = {C}.

1. if Pluck-a-leaf succeeds and returns (x,P ′)
– recurse on P ’, then Paste-a-leaf x back and return the resulting forest.

2. else-if the number of non-constant coordinates on P is at least 40q2

– Pick a non-constant coordinate i u.a.r and invoke Split(i) .
– if Split succeeds: recurse on P ′, then Merge x and x̄i, and return the resulting forest; otherwise fail.

3. else

– For every P ∈ P find its MST, T (P ), and return the forest {T (P )}.

Fig. 1. Algorithm for the simple case

Theorem 5 With probability ≥ 1/2, the algorithm in Figure 1 returns a tree whose cost is at most d+O(q2).
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In order to prove Theorem 5, fix an optimal phylogeny T over our initial set of terminals, and for any
partition P our algorithm creates, denote T [P ] as the forest induced by T on this partition. The proof of
the theorem relies on the following claim.

Claim 6 If P is a proper partition, then with probability ≥ 1− (8q)−1, Split is called on a good coordinate
and succeeds. Furthermore, Split is executed at most 4q times.

Proof (of Theorem 5). The proof follows from Claims 3 and 6. Since we start with a proper partition, then
with probability at least 1 − (4q)(8q)−1 ≥ 1/2 we keep recursing on proper partitions, until reaching the
base of the recursion. By the time the algorithm reaches the base of the recursion, the dimensionality of the
problem was reduced to d′ ≤ 40q2, so the cost of the optimal Steiner forest is at most d′ + q. As MSTs give
a 2-approximation to the optimal Steiner tree problem, our forest is of cost ≤ 2(d′ + q). Then, the algorithm
reconnects the forest, adding the coordinates (edges) the algorithm as removed in the first two steps of the
algorithm. Since the algorithm removed at most d − d′ edges, the tree it outputs is of overall cost at most
d− d′ + 2(d′ + q) = d+ 40q2 + 2q.

⊓⊔

Proof (of Claim 6). Let P be the partition in the first iteration of the algorithm for which Split was invoked,
and assume P is proper. Thus, the forest T [P ] contains disjoint components. We call any vertex in this forest
of degree ≥ 3 an internal split. Suppose we replace each internal split v with deg(v) many new vertices, each
adjacent to one edge. This breaks the forest into a collections of paths we call the path decomposition of the
tree. In addition, remove from this path decomposition all edges that are labeled with a bad coordinate to
obtain the good path decomposition. Denote the number of paths in the good path decomposition as t.

First, we claim that any call to Split (on P or any partition succeeding P), on a coordinate i which lies
on a path of length ≥ 2 in the abovementioned decomposition, does not fail.

Assume Split was called on i and denote its adjacent coordinate on the path as j (choose one arbitrarily
if i has two adjacent coordinates on its path), and both are non-constant on P ∈ P . Observe that our
decomposition leaves only good coordinates, so both i and j are good. Therefore, j is fixed on one side of
the i-cut and i is fixed on one side of the j-cut. It follows that there exist binary values bi, bj s.t. for every
x ∈ P , if xi = bi then xj = bj ; and if xj = 1 − bj then xi = 1− bi. In fact, the only node on the entire tree
for which xi = 1 − bi and xj = bj is the node connecting the i-edge and the j-edge. Recall that we assume
for the special case i and j do not define the same cut. It follows that the node between i and j has to be a
terminal, so now we can use Claim 4 and deduce Split succeeds.

So, Split can either fail or return a non-proper partition only if it was invoked either on a bad coordinate
or on a good coordinate that lies on a path of length 1 in our path decomposition. There are at most q bad
coordinates and at most t paths of length 1, so each call to Split fails w.p. ≤ q+t

40q2 . Furthermore, calling
Split on a good edge i lying on a path of length at least 2 results in both i’s endpoints as new leaves in
their respective sides of the i-cut. As a result, Pluck-a-leaf then completely unravels the path on which i
lies. Therefore, in a successful run of the algorithm, Split is called no more than t times. All that remains
is to bound t.

t is the number of paths on the path decomposition of P , a partition for which Pluck-a-leaf failed to
execute. Observe that if the forest T [P ] had even a single leaf connected to the rest of its tree by a good
coordinate, then Pluck-a-leaf would continue – such a leaf, by definition, is the only terminal on which
the good coordinate takes a certain value. It follows that l, the number of leaves in T [P ] is bounded by 2q,
the number of bad edges in T . Removing the internal splits then leaves us with at most 2l paths; removing
the bad coordinates’ edges adds at most 2q − l new paths (for every bad coordinate k adjacent to a leaf,
removing k does not create a new path). All in all, t ≤ 2l + 2q − l ≤ 4q. Therefore, each call to Split has
success probability ≥ 1− 4q+q

40q2 = 1− 1
8q , and Split is called at most 4q times.

⊓⊔
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4 The General Case: Interchangeable Coordinates May Exist

Before describing the general case, let us briefly discuss why the conventional way of initially contracting
all interchangeable coordinates and applying the algorithm from the Section 3 might result in a tree of cost
d+ω(q2). The analysis of the first two steps of the algorithm still holds. The problem lies in the base of the
recursion, where the algorithm runs the MST-based 2-approximation. Indeed, the MST algorithm is invoked
on < 40q2 contracted coordinates, but they correspond to d̃ original coordinates, and it is possible that
d̃ ≫ q2. So by using any constant approximation on this entire forest, we may end with a tree of cost d+2d̃
which isn’t d+O(q2).

Our revised algorithm does not contract edges initially. Instead, let us define a simple coordinate as one
for which Split(i) succeeds. So, the first alteration we make to the algorithm is to call Split as long as the
set of simple coordinates is sufficiently big. However, most alterations lie in the base of the recursion. Below
we detail the algorithm and analyze its correctness. In the algorithm’s description, for any coordinate i we
denote the set of coordinates interchangeable with i by Wi, and their number as w(i) = |W (i)|.

Theorem 7 With probability ≥ 1/2, the algorithm in Figure 2 returns a tree of cost d+O(q2).

The proof of Theorem 7 follows the same outline as the proof of Theorem 5. Observe that Claims 3 and 6
still hold2. Therefore, with probability ≥ 1/2, the algorithm enters the base of the recursion with a proper
partition. Thus, by the following claim, the algorithm outputs a tree of cost d+O(q2).

Claim 8 Assume that the base of the recursion (i.e., Step 3) is called on a proper partition P of the terminals
over d′ non-constant coordinates. Then the algorithm returns a forest of cost d′ +O(q2).

The full proof of Claim 8 is deferred to the appendix. However, let us sketch the main outline of the proof.
Recall the good path decomposition we used in the proof of Claim 6. We partition its paths in the following
way.

– Paths with at least one terminal on them. On such paths, because all interchangeable coordinates may
appear in T in any order, then all coordinates on such paths are simple. So, when we enter the base of
the recursion, there are at most 8q2 edges on such paths.

– Paths with no terminal on them, with length > q. Such paths are composed of interchangeable coordinates,
and since there are more than q of those, we deduce all of them are good. Therefore, the endpoints of
such paths are fixed up to at most q (bad) coordinates. We therefore contract these edges, split on them,
and introduce into each side of the cut an arbitrary endpoint, by replacing non-fixed coordinates with
zeros. So on each side of the cut the cost of the subtree increases by at most q, and since there are at
most 4q such paths, our overall cost for introducing these artificial endpoints is O(q2).

– Paths with no terminal on them, with length ≤ q. Such paths are composed of interchangeable coordinates,
but we do not contract them. Since there are at most 4q · q edges on such paths, we run the MST
approximation, and incur a cost of O(q2) for edges on such paths.

Runtime analysis: Pluck-a-leaf can be implemented in time linear in the size of the dataset, i.e. O(nd).
Counting the number of simple coordinates takes time O(nd2), and Split takes time O(nd). A naive imple-
mentation of the base case of the recursion takes time O(nd2) for contracting coordinates, and the rest can
be implemented in time O(nd). Hence the time to process each node in the recursion tree is at most O(nd2).
Since there are at most O(q) nodes in the recursion tree, the total runtime is O(qnd2).

2 Clearly, Split cannot abort now, but it might be the case that the algorithm picks i which is a bad coordinate.
This can happen with probability ≤ q/8q2 = 1/8q.
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input: A partition P of current terminals. Initially, P is the singleton set P = {C}.

1. if Pluck-a-leaf succeeds and returns (x,P ′)
– recurse on P ’, then Paste-a-leaf x and return the resulting forest.

2. else-if the number of simple coordinates on P is at least 8q2

– Pick a simple coordinate i u.a.r and invoke Split(i) .
– if Split succeeds: recurse on P ′, then Merge x and x̄i, and return the resulting forest; otherwise fail.

3. else

– Contract all Wi into ī
– For every ī with w(i) > q and the (unique) component P in which the i-cut resides,

• Apply pattern matching to (P, i). Let (Di,bi) be the pattern of i.
• if i is simple, split P into P0 ∪ {xi} and P1 ∪ {xi}.
• else

∗ Define the node y(i) as the node where yi = 0, every coordinate j ∈ Di is set to bij , and every
coordinate j /∈ Di is set to 0.

∗ Define y(i) to be y(i) with coordinate i flipped.
∗ P = P \ {P} ∪ {P0 ∪ {y(i)}} ∪ {P1 ∪ {y(i)}}.

– For every P ∈ P find its MST T (P ), and retrieve the forest {T (P )}.
– For every i with w(i) > q:

if i was simple, add an edge labeled i between xi and xi

else add an edge labeled i between y(i) and y(i).
– Expand all contracted coordinates to their original set of coordinates by replacing i with a path of length

w(i). Return the resulting forest.

Fig. 2. Algorithm for the general case

5 Discussion and Open Problems

This paper presents a randomized approximation algorithm for constructing near-perfect phylogenies. In
order to achieve this, we obtain a Steiner tree of low additive error. However, from the biological perspective,
the goal is to find a good evolutionary tree, one that will give correct answers to questions like “what is the
common ancestor of the following species?” or “which of the two gene-mutations happened earlier?”. Such
questions, we hope, can be answered by finding the most-parsimonious phylogenetic tree over the given taxa.
Hence, it is also desirable that any low-cost tree which we output also captures a lot of the structure of the
optimal tree.

We would like to point out that our algorithm in fact has this valuable property. Notice that until the base
case of the recursion, both Pluck-a-leaf and Split subroutines construct the optimal tree, and correctly
identify the endpoints of the edges they remove. Even when the algorithm reaches the base case of the
recursion – we can declare every edge of weight > q to be good, and we know its endpoints up to at most
q coordinates. In total, our algorithm gives the structure of the optimal tree up to O(q2) edges, and those
edges can be marked as “unsure”.

Several open problems remain for this work. The most straight-forward one is whether one can devise
an algorithm outputting a phylogenetic tree of cost d + O(q)? Alternatively, one may try to design exact
algorithms that are efficient even for q = ω(log d). We suspect that even the case of q = O((log d)2) poses
quite a challenge. Finally, extending our results to non-binary alphabets is intriguing. Note however that even
the case of perfect phylogenies is NP-hard, and tractable only for moderately sized alphabets. Furthermore,
our bottom-up approach completely breaks down for non-binary alphabets (see comment past Claim 3), so
devising an additive-approximation algorithm for the phylogeny problem with non-binary alphabets requires
a different approach altogether.
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A Appendix

Here, we give short proofs of the basic properties presented in Fact 2. Many of these results are also found
in other work [5].
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1. Let S be a set of coordinates that define the same cut over the terminals (up to renaming of P0 and P1).
Then whenever any edge in T is labeled with some i ∈ S, then the edge lies on a path on which each
edge is labeled with a unique coordinate from S, and no node of the |S|-long path is a terminal.

Proof. Assume i, j ∈ S define the same cut over C. Given some edge ei where i flips, consider the shortest
path from a terminal t1 through ei to another terminal t2. If every node on this path is of degree 2, there
is no terminal before t2, and j flips before t2. Now, suppose some node on the path between t1 and t2 has
degree more than 2. Either j flips on each outgoing path before any terminals, or j does not define the
same cut (since each outgoing path has a terminal on it). But if j flips on all outgoing paths before any
terminal occurs on those paths, relabel the Steiner nodes on each path so that j is constant along those
outgoing paths. Then, add one Steiner node and an edge from the endpoint of ei which flips j. This tree
has cost strictly less than the tree which flipped j on each outgoing path, since there were at least two
paths, each of which flipped j.

⊓⊔
2. For any two good coordinates, i 6= j, one side of the i-cut is contained within one side of the j-cut.

Alternatively, there exist values bj such that all terminals on one side of the i-cut have their jth coordinate
set to bj .

Proof. Suppose i is good. Then, consider the i-cut in T . Since j is good, j may flip only once in the tree.
If j flips in C0, then j is constant in C1. If j flips in C1, then j is constant in C0.

⊓⊔
3. Fix any good coordinate i and let j be a good coordinate such that all terminals on one side of the i-cut

have their j coordinate set to bj . Then both endpoints of the edge labeled i have their jth coordinate
set to bj .

Proof. Suppose that some endpoint of the edge on which i flips has j (which is constant on C0) set to b̄j .
Then, since the edge allows only one coordinate to flip across it, both endpoints are labelled with j = b̄j .
Then, the side where j is constant (say C0) has to pay for j.
If j is constant and set to bj on C1, j has to flip twice, a contradiction since j is good. If j is constant and
set to b̄j on C0, then the labels on i’s edge are labelled by some constant setting of j. If j is non-constant
Assuming j is non-constant for C1, j flips somewhere in C1. But then, j flips twice, contradicting the
fact that j is good.

⊓⊔
4. A good coordinate i and a bad coordinate i′ cannot define the same cut.

Proof. This follows directly from Fact 2.1, since i and i′ will occur the same number of times in an
optimal tree and a good coordinate occurs exactly once, while a bad coordinate occurs at least twice.

⊓⊔

B Proof of Claim 8

Here we give the full proof of Claim 8. For convenience, we reiterate the claim.

Claim 9 Assume that when step 3 is entered, P is a proper partition of the terminals over d′ non-constant
coordinates. Then step 3 of the algorithm returns a forest of cost d′ +O(q2).

Proof. Recall that for any coordinate i, we define the weight of i as the total number of coordinates inter-
changeable with i. Let Ppost denote the instance which results after splitting on all coordinates with weight
greater than q. The proof of the claim reduces to showing that there exists a forest over Ppost of cost O(q2).
If such a forest exists, the MST-based 2-approximation for each component returns a forest of cost O(q2),
and reconstructing the tree with plucked and split edges has weight at most d′. So, the forest over P we get
has cost ≤ d′ +O(q2).

The set of all terminals in all components of Ppost is composed of terminals that belong to the original
P , and the new terminals, added by coordinates of weight more than q which are not simple. We construct a
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forest of low cost over Ppost by (i) taking an optimal Steiner forest T over P , (ii) for every simple coordinate
which is split upon, remove the path of corresponding coordinates from T , and (iii) for every non-simple
coordinate split upon, remove the path of corresponding coordinates and introduce the two vertices y(i) and
y(i), connecting each vertex to the end-point of the path that resides in the same side of the cut. We denote
the resulting forest by T post, and show that T post contains at most O(q2) edges.

First, observe that since there are at most q bad coordinates, by splitting only on coordinates with weight
more than q, we are guaranteed to split only on good coordinates (we know from Fact 2 that the good and
bad coordinates cannot define the same cut). Therefore, since P is proper, the coordinate i resides in a
single component. Second, observe that the base of the recursion is executed only when Pluck-a-leaf fails.
Therefore, as in the proof of Claim 6, T is a forest with at most 2q leaves, so its path decomposition contains
at most 4q paths. Our next observation is the following proposition.

Proposition 1. Fix a path in the path decomposition of the forest. If there exists some non-endpoint terminal
on this path, all coordinates on this path are simple.

Proof. Let i be a coordinate associated with an edge on such a path. Let xi be a terminal on the path which
is the closest to i. Recall the observation from before, that any two coordinates that yield the same terminal
cut must appear in the optimal tree adjacent to one another, and furthermore, their order does not matter
(see Fact 2). Therefore, we may assume i is adjacent to xi. Furthermore, as xi is not an endpoint, there
exists a good coordinate j 6= i adjacent to xi on this path. It follows that i and j determine two different cuts
over the set of terminals. Then, just as in the proof of Claim 6, i is simple, where xi is the unique terminal
on one side of its cut matching i’s pattern.

⊓⊔
Proposition 1 means that any non-simple coordinate corresponds to an entire path in the path decompo-

sition (because all edges on a path with no terminals on it determine the same cut). We deduce that (a) the
number of non-simple contracted coordinates of weight more than q is at most 8q. Furthermore, the number
of edges on any path of length no more than q with no terminal on them is at most 8q2. Finally, since the
base of the recursion is executed only when Split fails to execute, the number of edges on paths that do
have a terminal on them is at most 16q2. It follows that the path decomposition of T contains at most 16q2

edges, in addition to the edges on paths of length more than q with no terminal on them (and each such
path causes the algorithm to split exactly once).

We can now upper bound the number of edges in T post. The forest T post contains at most 2q ≤ 2q2

bad edges; at most 16q2 edges from T ; and all the paths between the vertices we introduce by adding the
y(i)-vertices and connecting them to T . Let i be a non-simple contracted coordinate which was split upon,
and let u → v be the corresponding path on T which was removed. Assume y(i) resides on the same side of
the cut as u. Clearly, u and y(i) identify on all coordinates on the u → v path, but they also identify on all
other good coordinates: a good coordinate j appears most once in T , so u, v and all terminals on at least
one side of the u − v cut has the same value on their jth coordinate. It follows that the path between y(i)
and u is of length at most q, and the same applies to the path between y(i) and v. Therefore, the number of
edges on paths we have yet to upper bound, sum to no more than 8q · 2 · q = 16q2. Thus T post contains no
more than 34q2 edges. This completes the proof.

⊓⊔
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