
Security-Typed Programming
within Dependently Typed Programming

Jamie Morgenstern∗ Daniel R. Licata ∗

Carnegie Mellon University
{jamiemmt,drl}@cs.cmu.edu

Abstract
Several recent security-typed programming languages, such as
Aura, PCML5, and Fine, allow programmers to express and en-
force access control and information flow policies. In this paper,
we show that security-typed programming can be embedded as a
library within a general-purpose dependently typed programming
language, Agda. Our library, Aglet, accounts for the major fea-
tures of existing security-typed programming languages, such as
decentralized access control, typed proof-carrying authorization,
ephemeral and dynamic policies, authentication, spatial distribu-
tion, and information flow. The implementation of Aglet consists
of the following ingredients: First, we represent the syntax and
proofs of an authorization logic, Garg and Pfenning’s BL0, using
dependent types. Second, we implement a proof search procedure,
based on a focused sequent calculus, to ease the burden of con-
structing proofs. Third, we represent computations using a monad
indexed by pre- and post-conditions drawn from the authorization
logic, which permits ephemeral policies that change during execu-
tion. We describe the implementation of our library and illustrate
its use on a number of the benchmark examples considered in the
literature.

Categories and Subject Descriptors F.3.3 [Logics and Meanings
Of Programs]: Studies of Program Constructs—Type structure;
F.3.1 [Logics and Meanings Of Programs]: Specifying and Veri-
fying and Reasoning about Programs

1. Introduction
Security-typed programming languages allow programmers to
specify and enforce security policies, which describe both access
control—who is permitted to access sensitive resources?—and in-
formation flow—what are they permitted to do with these resources
once they get them? Aura [24] and PCML5 [9] enforce access con-
trol using dependently typed proof-carrying authorization (PCA):

∗ This research was sponsored in part by the National Science Foundation
under grants CCF-0702381 and CNS-0716469, and by the Pradeep Sindhu
Computer Science Fellowship. The views and conclusions contained in this
document are those of the author and should not be interpreted as repre-
senting the official policies, either expressed or implied, of any sponsoring
institution, the U.S. government or any other entity.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-60558-794-3/10/09. . . $5.00

the run-time system requires every access to a sensitive resource
be accompanied by a proof of authorization [7], while the type sys-
tem aids programmers in constructing correct proofs. Fable [37]
and Jif [14] enforce information flow properties using type systems
that restrict the use of values that depend on private information.
Fine [38] combines these techniques to enforce both. These lan-
guages’ type systems employ a number of advanced techniques,
such as dependently typed authorization proofs, indexed monads
of computations at a place and on behalf of a principal [8], infor-
mation flow types, and affine types for ephemeral security policies.

Dependently typed programming languages provide a rich lan-
guage of type-level data and computation. One promising appli-
cation of dependent types is constructing domain-specific type sys-
tems as libraries, rather than new language designs—this allows the
language designer to exploit the implementation, metatheory, and
tools of the host language. In this paper, we apply this methodology
to security typed programming, and show that security-typed pro-
gramming can be embedded within a general-purpose dependently
typed programming language, Agda [32]. We implement a library,
Aglet, which accounts for the major features of existing security-
typed programming languages, such as Aura, PCML5, and Fine:

Decentralized Access Control: Access control policies are ex-
pressed as propositions in an authorization logic, Garg and Pfen-
ning’s BL0 [21]. This permits decentralized access control policies,
expressed as the aggregate of statements made by different princi-
pals about the resources they control. In our embedding, we rep-
resent BL0’s propositions and proofs using dependent types, and
exploit Agda’s type checker to validate the correctness of proofs.

Dependently Typed PCA: Primitives that access resources, such
as file system operations, require programmers to provide a proof
of authorization, which is guaranteed by the type system to be a
well-formed proof of the correct proposition.

Ephemeral and Dynamic Policies: Whether or not one may ac-
cess a resource is often dependent upon the state of a system. For
example, in a conference management server, authors may submit
a paper, but only before the submission deadline. Fine accounts for
ephemeral policies using a technique called affine types, which re-
quires a substructural notion of variables. Because Agda does not
currently provide substructurality, we show that one can instead
account for ephemeral policies using an indexed monad. Following
Hoare Type Theory [31], we define a type© Γ A Γ′, which rep-
resents a computation that, given precondition Γ, returns a value
of type A, with postcondition Γ′. Here, Γ and Γ′ are propositions
from the authorization logic, describing the state of resources in the
system. For example, consider the operation in a conference man-
agement server that closes submissions and begins reviewing. We
represent this by a computation of type
© (InPhase Submission) Unit (InPhase Reviewing)
Given the conference is in phase Submission, this computation re-
turns a value of type Unit, and the state of the conference has been

changed to Reviewing. For comparison between the approaches,
we adapt Fine’s conference management example to our indexed
monad. Aglet also permits dynamic acquisition and generation of
policies—e.g., generating a policy based on reading the state of the
conference management server from a database on startup.

Authentication: Following previous work by Avijit and Harper
[8], we model authentication with an indexed monad of computa-
tion on behalf of a principal, which tracks the currently authen-
ticated user. This monad is equipped with a sudo operation for
switching users, given appropriate credentials. We show that com-
putation on behalf of a principal is a special case of our policy-
indexed monad© Γ A Γ’.

Spatial distribution: We also show that our policy-indexed
monad can be used to model spatial distribution as in PCML5.

Information Flow: Information flow policies constrain the use
of values based on what went into computing them, e.g. tainting
user input to avoid SQL injection attacks. We represent informa-
tion flow using well-established techniques, such as indexed mon-
ads [36] and applicative functors [38].

Compile-time and Run-time Theorem Proving: Dependently
typed PCA admits a sliding scale between static and dynamic ver-
ification. At the static end, one can verify, at compile-time, that a
program complies with a statically-given authorization policy. This
verification consists of annotating each access to a resource with an
authorization proof, whose correctness is ensured by type checking.
However, in many programs, the policy is not known at compile
time—e.g., the policy may depend upon a system’s state. Such pro-
grams may dynamically test whether each operation is permitted
before performing it, in which case dependently typed PCA ensures
that the correct dynamic checks are made and that failure cases are
handled. A program may also mix static and dynamic verification:
for example, a program may dynamically check that an expected
policy is in effect, and then, in the scope of that check, deduce con-
sequences statically. Security-typed languages use theorem provers
to reduce the burden of static proofs (as in Fine) and to implement
dynamic checks (as in PCML5). We have implemented a certified
theorem prover for BL0, based on a focused sequent calculus. Our
theorem prover can be run at compile-time and at run-time, fulfill-
ing both of these roles. The theorem prover also saves programmers
from having to understand the details of the authorization logic, as
they often do not need to write proofs manually.

The remainder of this paper is organized as follows: In Sec-
tion 2, we show a variety of examples adapted from the litera-
ture, which demonstrate that Aglet accounts for programming in
the style of Aura, PCML5, and Fine. In Section 3, we describe the
implementation of Aglet, including the representation of the logic
and the implementation of the theorem prover. We discuss related
work in Section 4 and future work in Section 5. The Agda code for
this paper is available from http://www.cs.cmu.edu/~drl.

2. Examples
In this section, we show that Aglet supports security-typed pro-
gramming in the style of Aura, PCML5, and Fine by implementing
a number of the benchmark examples considered in the literature.
We briefly review Agda’s syntax, referring the reader to the Agda
Wiki(wiki.portal.chalmers.se/agda/). Dependent function
types are written as (x : A) � B. An implicit dependent function
space is written {x : A} � B or ∀ {x} � B and arguments to
implicit functions are inferred. Non-dependent functions are writ-
ten A � B. Anonymous functions are written λ x � e. Named
functions are defined clausally by pattern matching. Lists are con-
structed by [] and :: (note that : is used for type annotations). Set
is the classifier of classifiers in Agda.

Admin says (∀r.∀o.∀f.
(HR says employee(r)
∧ System says owns(o, f)
∧ o says mayread(r, f))
⊃ mayread(r, f))

System says owns(Jamie, secret.txt)
HR says employee(Dan)
HR says employee(Jamie)
Jamie says mayread(Dan, secret.txt)
Jamie says mayread(Jamie, secret.txt)

Figure 1. Sample access control policy

2.1 File IO with Access Control
First, we show a dependently typed file system interface, a standard
example of security typed programming [8, 38, 39].

2.1.1 Policy
To begin, we specify an authorization policy for file system opera-
tions in BL0 (Figure 1): First, the principal Admin says that for any
reader, owner, and file, if human resources says the reader is an em-
ployee, and the system administrator says the owner owns the file,
and the owner says the reader may read a file, then the reader may
read the file. Admin is a distinguished principal whose statements
will be used to govern file system operations. Second, the system
administrator says Jamie owns secret.txt. Third, human resources
says both Dan and Jamie are employees. Fourth, Jamie says Dan
and Jamie may read the file. This policy illustrates decentralized
access control using the says modality: the policy is the aggregate
of statements by different principals about resources they control.

For the principal Dan to read secret.txt, it will be sufficient to
deduce the goal Admin says mayread(Dan, secret.txt). This
proposition is provable from the above policy because of three
properties of says : First, says is closed under instantiation of
universal quantifiers (that is, k says ∀x.A(x) entails ∀x.k says
A(x)). Second, says distributes over implications (k says (A ⊃
B) entails ((k says A) ⊃ (k says B)). Third, every principal
believes that every statement of every other principal has been
made (k says A entails k′ says (k says A))—though it is not
the case that every principal believes that every statement of every
other principal is true. Thus, the goal can be proved by using
the first clause of the policy (Admin says . . .), instantiating the
quantifiers, and using the other statements in the policy to satisfy
the preconditions.

In Agda, we represent this first clause as the first element of the
following context (list of propositions):

Γpolicy =
(Prin "Admin" says
(∀e principal · ∀e principal · ∀e filename ·

let owner = . (iS (iS i0))
reader = . (iS i0)
file = . i0 in

(((Prin "HR" says (a- (Employee · reader)))
∧ (Prin "System" says (a- (Owner · (owner , file))))
∧ (owner says (a- (Mayread · (reader , file)))))
⊃
(a- (Mayread · (reader , file)))))) ::

(Prin "Admin" says
(∀e principal ·
∀e filename ·
(Prin "System" says (a- (Owner · (. iS i0 , . i0))))
⊃
(a- (MayChown · (. iS i0 , . i0))))) ::

[]

The second element of the list expresses an additional policy
clause, not discussed above, which states that an owner of a file
may change its ownership. Variables are represented as de Bruijn
indices (i0, iS), constants are represented as injections of strings
(Prin "Admin"), and atomic propositions are tagged with a po-
larity (a+ or a-), which can be thought of as a hint to the theorem
prover. Quantifiers are written ∀e τ · A, where τ is the domain of
quantification and A is the body of the quantifier. Atomic proposi-
tions are written p · t, where p is a proposition constant such as
Mayread and t is a term (see Section 3.1 for details).

Next, we define a context representing a particular file system
state. This context includes all the employee, ownership, and may-
read facts mentioned above, with one additional clause saying that
Dan may su as Jamie.

Γstate =
(Prin "System" says

(a- (Owner · (Prin "Jamie" , File "secret·txt"))))
:: (Prin "HR" says (a- (Employee · (Prin "Dan"))))
:: (Prin "HR" says (a- (Employee · (Prin "Jamie"))))
:: (Prin "Jamie" says

(a-(Mayread · (Prin "Dan" , File "secret·txt"))))
:: (Prin "Jamie" says

(a-(Mayread · (Prin "Jamie" , File "secret·txt"))))
:: (Prin "Admin" says

(a- (MaySu · (Prin "Dan" , Prin "Jamie"))))
:: []

Γall = Γpolicy ++ Γstate

Finally, we let Γall stand for the append of Γpolicy and Γstate.

2.1.2 Compile-time Theorem Proving
We now explain the use of our theorem prover:

goal = a-(Mayread · (Prin "Dan" , File "secret·txt"))

proof? : Maybe (Proof Γall goal)
proof? = prove 15

theProof : Proof Γall goal
theProof = solve proof?

The term proof? sets up a call to the theorem prover, attempting
to prove mayread(Dan, secret.txt) using the policy specified by
Γall. Sequent calculus proofs are represented by an Agda type
family (Ω ; ∆ ; Γ ; k) ` A, where Ω binds individual vari-
ables, ∆ is a context of claims assumptions, Γ is context of truth
assumptions, and k, the view, is a principal from whose point of
view the judgement is made. Informally, the role of the view is that,
in a sequent whose view is k, k says A entails A; see Section 3.1
for details about the logic. In this example, Ω and ∆ will always
be empty, Γ will represent a policy, as above, and the view k will
be Prin "Admin"—we abbreviate such a sequent by Proof Γ A.
The context and proposition arguments to prove can be inferred
by Agda, and so are left as implicit arguments. The term theProof
checks that the theorem prover succeeds at compile-time in this in-
stance. The function solve has type:

solve : ∀ {A} (s : Maybe A) � {p : Check (isSome s)} � A

The argument p, of type Check (isSome s), is a proof that s is
equal to Some s’ for some s’. Because this argument is implicit,
Agda will attempt to fill it in by unification, which will succeed
when s is definitionally equal to a term of the form Some s’. In this
example, the call to the theorem prover in the term proof? proves
the goal, computing definitionally to Some s’ for a proof s’ of
mayread(Dan, secret.txt). Thus, we can use solve to extract this
proof s’. In general, a call to the theorem prover on a context and
a proposition that have no free Agda variables will always be equal
to either Some p or to None.

Generic operations:
© : TCtx+ [] � (A : Set) � (A � TCtx+ []) � Set

return : ∀ { Γ A} � A � © Γ A (\ _ � Γ)

>>= : ∀ {A B Γ Γ’ Γ’’}
� (© Γ A Γ’)
� ((x : A) � © (Γ’ x) B Γ’’)
� © Γ B Γ’’

weakenPre : ∀ {A Γ Γ’ Γn }
� (Good Γn � Good Γ)
� © Γ A Γ’ � Γ ⊆ Γn � © Γn A Γ’

weakenPost : ∀ {A Γ Γ’ Γn}
� © Γ A Γ’
� ((x : A) � (Γn x ⊆ Γ’ x))
� ((x : A) -> (Good (Γ’ x) � Good (Γn x)))
� © Γ A Γn

getLine : ∀ {Γ} � © Γ String (\ _ � Γ)

print : ∀ {Γ} � String � © Γ Unit (\ _ � Γ)

error : ∀ {A Γ Γ’} � String � © Γ A Γ’

acquire : ∀ {A Γ Γ’} � (Γn : TCtx+ [])
� (Good Γ � Good (Γn ++ Γ))
� © (Γn ++ Γ) A Γ’ � © Γ A Γ’
� © Γ A Γ’

File-specific operations:
sudo : ∀ { Γ A Γ’ ∆ ∆’} � (k1 k2 : _)
� Replace (a+ (As · k1)) (a+ (As · k2)) Γ ∆
� ((x : A) � Replace (a+ (As · k2)) (a+ (As · k1))

(∆’ x) (Γ’ x))
� (Proof Γ (a- (MaySu · (k1 , k2))))
� © ∆ A ∆’
� © Γ A Γ’

read : ∀ {Γ} (k : _) (file : _)
� Proof Γ ((a- (Mayread · (k , file)))

∧ (a+ (As · k)))
� © Γ String (λ _ � Γ)

create : ∀ {Γ} (k : _)
� Proof Γ ((a- (User · k))

∧ (a+ (As · k)))
� © Γ String

(λ new � (Prin "System" says
(a-(Owner · (k , File new)))) :: Γ)

chown : ∀ { Γ ∆} � (k k1 k2 : _) � (f : _)
� Replace (Prin "System" says (a-(Owner · (k1 , f))))

(Prin "System" says (a-(Owner · (k2 , f))))
Γ ∆

� (Proof Γ ((a+ (As · k))
∧ (a- (MayChown · (k , f)))))

� © Γ Unit (\ _ � ∆)

Figure 2. File IO with Authorization

2.1.3 Computations
We present a monadic interface for file operations in Figure 2.

This figure shows both the generic IO operations, as well as three
file-specific operations for reading, creating, and changing the
owner of a file. The type © Γ A Γ’ represents a computation
with precondition Γ and postcondition Γ’. The Agda type of a con-

text is TCtx+ [] (a context of positive truth assumptions, with no
free individual variables—see Section 3.1). The postcondition is
a function from A’s to contexts, so the postcondition may depend
on the computation’s result (see create below). The generic op-
erations are typed as follows: Because return is not effectful, its
postcondition is its precondition. Bind (>>=) chains together two
computations, where the postcondition of the first is the precondi-
tion of the second. Both pre- and postconditions can be weakened
to larger and smaller contexts, respectively; the Good predicate
can be ignored until Section 2.1.4 below. Primitives like getLine
(reading a line of input) and print do not change the state and
do not require proofs. The postcondition of error is arbitrary, as
it never terminates successfully. The remaining computations are
defined as follows:

Read The function read takes a principal k, a file f, and a proof
argument. The proof ensures that the principal k is authorized to
access the file (Mayread(k,f)) and that the principal k is the
currently authenticated user (As(k)). We use the proposition As
to model computation on behalf of a principal [8]. The proof is
checked in the context Γ that is the precondition of the computa-
tion, ensuring that it is valid in the current state of the world. read
delivers the contents of the file and leaves the state unchanged.

An example call to read looks like this:

Γj = Γall as "Jamie"

jread : © Γj String (λ _ � Γj)
jread = read (Prin "Jamie") (File "secret·txt")

(solve (prove 17))

jreadprint : © Γj Unit (λ _ � Γj)
jreadprint = jread >>= λ x �

print ("the secret is: " ^ x)

The function call Γall as k is shorthand for adding the proposi-
tion As(k) to the context Γall. The computation jread reads the
file secret.txt as principal Jamie; the proof argument is sup-
plied by a call to the theorem prover, which statically verifies that
the required fact is derivable from the policy given by Γall. The
computation jreadprint reads the file and then prints the result.

Create The type of create is similar to read, in that it takes a
principal and a proof that the principal can create a file (in this case,
the fact that the principal is a registered user is deemed sufficient).
It returns a String, the name of the created file, and illustrates
why postconditions must be allowed to depend on the return value
of the computation: the postcondition says that the principal is the
owner of the newly created file. Thus, after a call to create(k),
the postconditions signify System says Owner(k,f), where f is
the name of the new file.

Chown To specify chown, we use a type Replace x y Γ ∆,
which means that ∆ is the result of replacing exactly one occur-
rence of x in Γ with y. Replace (whose definition is not shown) is
defined by saying that (1) there is a de Bruijn index i showing that
x is in Γ and (2) ∆ is equal to the output of the function replace y
i, which recurs on the index i and replaces the indicated element
by y. The type of chown should be read as follows: if the principal k
as whom the computation is running has the authority to change the
owner of a file, and replacing owns(k,f) with owns(k’, f) in Γ
produces ∆, then we can produce a computation which changes the
owner of f from k to k’, leaving the remaining context unchanged.

Next, we show an example call to chown, using a context
Γstate’ that is the result of replacing the fact that Jamie owns
secret.txt with Dan owning that file. The computation dchown
runs as Dan; it changes the owner of the file from Dan to Jamie,
and then runs a computation drdprnt, defined below, that reads the

file. proveReplace is a tactic used to prove that Γall’ is Γall
with the ownership of secret.txt changed. solve (prove 15)
calls the theorem prover to statically verify that Dan has permission
to chown secret.txt.

Γstate’ = replace {_} {Γstate}
(Prin "System" says

(a- (Owner · (Prin "Dan" , File "secret·txt"))))
i0

Γall’ = Γpolicy ++ Γstate’

dchown : © (Γall’ as "Dan") Unit (λ _ � Γall as "Dan")
dchown = chown (Prin "Dan") (Prin "Dan") (Prin "Jamie")

(File "secret·txt")
(solve proveReplace) (solve (prove 15))

>> drdprnt

Sudo Following Avijit and Harper [8], we now give a well-typed
version of the Unix command sudo, which allows switching princi-
pals during execution. A first cut for the type of sudo is as follows:

sudo1 : ∀ { Γ A Γ’} � (k1 k2 : _)
� (Proof Γ (a- (MaySu · (k1 , k2))))
� © ((a+ (As · k2)) :: Γ) A (λ _ � (a+ (As · k2)) :: Γ’)
� © ((a+ (As · k1)) :: Γ) A (λ _ � (a+ (As · k1)) :: Γ’)

If there is a proof that k1 may sudo as k2 (e.g., a password was
provided), and As(k1) is in the precondition, then it is permissible
to run a subcomputation as k2. This subcomputation has a postcon-
dition saying that it terminates running as k2, and then the overall
computation returns to running as k1. Because our contexts are or-
dered (represented as lists rather than sets), sudo has the type in
Figure 2, which allows the As facts to occur anywhere in the con-
text. sudo’s type may be read: if replacing As(k1) with As(k2)
in Γ equals ∆, and if replacing As(k2) with As(k1) in ∆’ equals
Γ’, and k2 has permission to su as k1, then a computation with
preconditions ∆ and postconditions ∆’ can produce a computation
with preconditions Γ and postconditions Γ’.

The following example call to sudo defines a computation as
Dan that su’s as Jamie to run the computation jreadprint de-
fined above:

drdprnt : © (Γall as "Dan") Unit (λ _ � Γall as "Dan")
drdprnt = sudo (Prin "Dan") (Prin "Jamie")

(solve proveReplace)
(λ _ � solve proveReplace)
(solve (prove 15))
jreadprint

This requires proving that Γstate as "Jamie" and Γstate as
"Dan" are related by replacing As(Prin "Jamie") with As(Prin
"Dan") (in both directions). Our tactic proveReplace proves all
of these equalities. Additionally, the theorem prover statically ver-
ifies Dan may su as Jamie under the policy Γall as "Dan".

Acquire The function acquire allows a program to check
whether a proposition is true in the state of the world. This con-
struct is inspired by acquire in PCML5, but there are slight dif-
ferences: in PCML5, acquire does theorem proving to prove an
arbitrary proposition from the policy, whereas here acquire only
verifies the truth of state-dependent atomic facts (which have no
evidence) and statements of principals (whose only evidence is a
digital signature [9, 24]). The function acquire takes two contin-
uations: one to run if the check is successful, whose precondition
is extended with the proposition, and an error handler, whose pre-
condition is the current context, to run if the check fails. In fact, we
allow acquire to test an entire context at once: given a context Γn,
a computation with preconditions Γ extended with Γn (the success

continuation), and a computation with preconditions Γ (the error
continuation), acquire returns a computation with preconditions
Γ. We use the notation acquire Γn / _ no⇒ s yes⇒ f to
write a call to acquire in a pattern-matching style. The _ elides a
Good argument, which is explained below.

main : © [] Unit (λ _ � [])
main = acquire (Γall as "Jamie") / _

no⇒ error "acquiring policy failed"
yes⇒ weakenPost jreadprint (λ _ ()) _

This example call begins and ends in the empty context. The call to
acquire examines the system state to check the truth of each of the
propositions in Γall as "Jamie". If all of these are true, then we
run jreadprint and use weakening to forget the postconditions.
If some proposition cannot be verified, then main calls error.

2.1.4 Verifying Policy Invariants
When authoring the above monadic signature for file IO, the pro-
grammer may have in mind some invariants to which policies Γ
must adhere. For example, a call to chown (above) would have un-
expected consequences if there ever were more than one copy of
System says owns(k,f) in Γ (only one copy would be replaced,
leaving a file with two owners in the postcondition). Our interface
permits programmers to specify context invariants using a predicate
Good Γ. The intended invariant of our interface is that a monadic
computation © Γ A Γ’ should have the property that Γ’ satis-
fies Good if Γ does. To achieve this, the weakening operations and
acquire require preconditions Γ be accompanied by a proof of
Good Γ, and the programmer must verify that operations such as
read, chown, and sudo preserve the invariant. Because of this in-
variant, it is not necessary to make each monadic operation require
a proof that the precondition is Good. This means, that when writ-
ing a client program, the programmer needs only to verify that the
initial policy and those in calls to weakening and acquire satisfy
the invariants.

In the above examples, we took Good to be the trivially true
invariant, so the proofs could be elided with an _. As mentioned
above, a useful invariant to enforce is that for every file f there is at
most one statement of the form System says Owner(_ , f) in
the context. This is defined in Agda as follows:

Good : TCtx+ [] � Set
Good Γ = ∀ {k k’ f}
� (a : (Prin "System" says (a- (Owner · (k , f)))) ∈ Γ)
� (b : (Prin "System" says (a- (Owner · (k’ , f)))) ∈ Γ)
� Equal a b

Then we may prove that the postcondition of each operation is
Good if the precondition is; e.g.

ChownPreservesGood : ∀ {Γ ∆ k1 k2 f}
� Replace (Prin "System" says (a-(Owner · (k1 , f))))

(Prin "System" says (a-(Owner · (k2 , f))))
Γ ∆

� Good Γ � Good ∆

In the companion code, we revise the above examples so that they
maintain this invariant, using a tactic to generate the proofs.

2.2 File IO with Access Control and Information Flow
Next, we extend the above file signature with information flow,
adapting an example from Fine [38]. First, we define a type
Tracked A L which represents a value of type A tracked with
security level L, where L is a list of filenames and t appends two
lists. Following Fine, we define Tracked as an abstract functor
that distributes over functions (though different type structures for
information flow, such as an indexed monad [36], can be used in
other examples):

Tracked : Set � Label � Set
fmap : ∀ {A B L} � (A � B) � Tracked A L � Tracked B L
� : ∀ {A B L1 L2} � Tracked (A � B) L1

� Tracked A L2 � Tracked B (L1 t L2)

An application f � x joins the security levels of the function and
the argument.

Next, we give flow-sensitive types to read and write: read tags
the value with the file it was read from, and write requires a proof
of MayAllFlow provs file, representing the fact that all of the
files upon which the written string depends may flow into file.

read : ∀ {Γ} (k : _) (file : _)
� Proof Γ ((a- (Mayread · (k , file))) ∧ (a+ (As · k)))
� © Γ (Tracked String [file]) (λ _ � Γ)

write : ∀ {Γ provs} (k : _) (file : _)
� Tracked String provs
� Proof Γ ((a- (Maywrite · (k , file)))

∧ (a+ (As · k))
∧ (MayAllFlow provs file))

� © Γ Unit (λ _ � Γ)

For example, we can read two files and write their concatenation
to secret.txt:

go : © (Γ as "Jamie") Unit (\ _ � (Γ as "Jamie"))
go = read (Prin "Jamie") (File "file1.txt")

(solve (prove 15)) >>= \ s �
read (Prin "Jamie") (File "file2·txt")

(solve (prove 15)) >>= \ s’ �
write (Prin "Jamie") (File "secret·txt")

((fmap String.string-append s) � s’)
(solve (prove 15))

Here the theorem prover shows that both file1.txt and file2.txt
may flow into secret.txt, according to the policy. This proof
obligation results from the fact that
(fmap String.string-append s) � s’
has type
Tracked String ["file1.txt" , "file2.txt"].

2.3 Spatial Distribution with Information Flow
PCML5 investigates PCA for the spatially distributed programming
language ML5 [29]. Here, we show how to embed an ML5-style
type system, which can be combined with the above techniques for
access control and information flow. PCML5 considers additional
aspects of distributed authorization, such as treating the policy itself
as a distributed resource, which we leave to future work.

ML tracks where resources and computations are located using
modal types of the form A @ w. For example, database.read :
(key � value) @ server says that a function that reads from
the database must be run at the server, while javascript.alert
: (string � unit) @ client says that a computation that
pops up a browser alert box must be run at the client. Network
communication is expressed in ML5 using an operation get :
(unit � A) @ w � A @ w’ that (under some conditions which
we elide here) goes to w to run the given computation and brings the
resulting value back to w’. In other work [27], we have shown how
to build an ML5-like type system on top of an indexed monad of
computations at a place, © w A, with a rule get : © w’ A �
© w A. Here, observe that this monad indexing can be represented
using a proposition At(w), where get is given a type analogous to
sudo:

get : (w1 w2 : _) � ∀ {Γ A Γ’ ∆ ∆’}
� Replace (a+ (At · w1)) (a+ (At · w2)) Γ ∆
� Replace (a+ (At · w2)) (a+ (At · w1)) ∆’ Γ’
� © ∆ A (\ _ � ∆’)
� © Γ (Tracked A w2) (\ _ � Γ’)

Additionally, we combine spatial distribution with information
flow, tagging the return value of the computation with the world
it is from. The postcondition must be independent of the return
value, as there is in general no coercion either way between A and
Tracked A L.

Information flow can be used in this setting to force strings to
be escaped before they are sent back to the client—e.g. to prevent
SQL injection attacks:

sanitize : Tracked String (client) � HTML
str : Tracked String (server) � HTML

Strings from the client must be escaped before they can be included
in an HTML document, whereas strings from the server are as-
sumed to be non-malicious, and can be included directly.

In our technical report [28], we extend this example with a sim-
ple database interface that enforces both authorization and spatial
distribution—database handles are only used at the server.

2.4 ConfRM: A Conference Management System
Swamy et al. [38] present an example of a conference management
server, ConfRM, adapted from CONTINUE [26] and its access con-
trol policy [18]. Here, we show an excerpt of an authorization pol-
icy for ConfRM, a proof-carrying monadic interface to the com-
putations which perform actions, and the main event loop of the
server. This example uses ephemeral policies: authorization to per-
form actions, such as submitting a paper or a review, depend on the
phase of the conference (submission, notification,. . .).

2.4.1 Policy
We formalize ConfRM’s policy using terms of various types:
actions represent requests to the web server; principals rep-
resent users; papers and strings are used to specify actions;
roles define whether a user is an Author, PCMember, and so on.
The policy is also dependent on the phase of the conference (e.g.,
an Author may submit a paper during the submission phase).
The proposition May · (k , a) states that k may perform ac-
tion a. Each action is a first-order term constructed from some
arguments (e.g., Submit, Review, Readscore, Read all have
papers, while Progress has two phases, the phase the conference
is in before and after it is progressed).

Fine specifies the policy as a collection of Horn clauses, which
are simple to translate to our logic, as in the following clause:

clause1 =
((∀e principal · ∀e string ·

let
author = . iS i0
papername = . i0

in
(((a- (InPhase · (Submission))) ∧

((a- (InRole · (author , Author)))))
⊃ (a- (May · (author , (Submit · papername)))))))

This proposition reads: for all authors and paper names, if the
conference is in the submission phase, and the principal is an
author, then the principal may submit a paper. We have also begun
to reformulate the policy using the says modality, e.g. to allow
authors to share their paper scores with their coauthors.

saysClause =
((∀e principal · ∀e paper · ∀e principal ·

let primary = . i0
paper = . (iS i0)
coauthor = . (iS (iS i0)) in

((((a- (InPhase · (Notification)))) ∧
((a- (Author · (primary , paper)))) ∧
(primary says (a- (May · (coauthor ,

(Readscore · paper))))))
⊃ (a- (May · (coauthor , (Readscore · paper)))))))

This rule states that, for any principal author, paper paper, and
principal coauthor, if the conference is in notification phase, and
author is the author of paper, and author says coauthor may
read the scores for paper, then coauthor may read the scores
for paper. Similarly, using says, it is straightforward to specify
a policy allowing PC members to delegate reviewing assignments
to subreviewers.

2.4.2 Actions
Rather than defining a command for each action—doRead, doSubmit,
etc.— we use type-level computation to write one command for
processing all actions; this simplifies the code for the main loop
presented below and allows for straightforward addition of actions.
The generic command for processing an action, doaction, has the
following type:

doaction : ∀ {Γ} (k : _) (a : _) � (e : ExtraArgs Γ a)
� Proof Γ (a- (May · (k , a))) ∧ (a+ (As · k))
� © Γ (Result a) (λ r � PostCondition a Γ e k r)

doaction takes a principal k, an action a to perform, and some
ExtraArgs for a, along with a proof that the computation is run-
ning as k, and that k may perform a. In this example, a Proof ab-
breviates a sequent whose view is PCChair, rather than Admin. It
returns a Result, and has a PostCondition, both of which are de-
pendent upon the action being performed. In Agda, ExtraArgs,
Result, and PostConditions are functions defined by recursion
on actions, which compute a Set, a Set, and a context, respectively.

Several actions, such as Submitting a paper, require extra data
that is not part of the logical specification (e.g., the contents of the
paper should not be part of the proposition which authorizes it to
be submitted). ExtraArgs produces the set of additional arguments
each action requires.

ExtraArgs : TCtx+ [] � Term [] (action) � Set
ExtraArgs Γ (Review · _) = Term [] (string)
ExtraArgs Γ (Submit · _) = Term [] (string)
ExtraArgs Γ (Progress · (p1 , p2)) = Σ (λ ∆ �

Replace (a- (InPhase · p1))
(a- (InPhase · p2)) Γ ∆)

ExtraArgs Γ _ = Unit

Reviews and paper submissions require their contents, represented
as terms of type string (the Agda type Term [] (string) is
an injection of strings into the language of first-order terms that
we use to represent propositions, as described in Section 3 below).
Progressing the phase of the conference requires a proof that the
conference is in the first phase, along with a new context in the
resulting phase, which we represent by a pair of a new context ∆
and a proof of Replace.

Next, we specify the result type of an action:

Result : Term [] (action) � Set
Result (Submit · _) = Term [] (paper)
Result (Review · _) = Unit
Result (BeAssigned · _) = Unit
Result (Readscore · _) = String
Result (Read · _) = String
Result (Progress · _) = Unit

Readscore and Read return a paper’s reviews and contents, while
submit produces a Term [] paper, a unique id for the paper.

Finally, we define the PostCondition of each action, which
is dependent upon the action itself, the precondition, the extra ar-
guments for the action, the principal performing the action, and
the Result of the action. Submitting a paper extends the pre-
conditions with two propositions: one saying the paper has been
submitted, and one saying the submitting principal is its author.
Reviewing and Assigning a paper add that the paper is reviewed

fix : ∀ {A Γ’}
� ((∀ {Γ} � © Γ A Γ’) � (∀ {Γ} � © Γ A Γ’))
� (∀ {Γ} � © Γ A Γ’)}

main : ∀ {Γ} � © Γ Unit (λ _ � [])
main = fix loop where
loop : (∀ {Γ} � © Γ Unit (λ _ � [])) �

(∀ {Γ} � © Γ Unit (λ _ � []))
loop rec {Γ} =

{-1-} prompt "Enter an action:" >>= λ astr �
case (parseAction astr)
None⇒ error "Unknown action"
Some⇒ λ actionArgs �
let a = (fst actionArgs)

args = (snd actionArgs) in
{-2-} prompt "Who are you?" >>= λ ustring �

let u = parsePrin ustring in
{-3-} acquire [((a- (MaySu · (Prin "Admin" , u))))]

/ _
no⇒ error "Unable to su"

{-4-} yes⇒ case make-replace
None⇒ error "oops, not running as admin"
Some⇒ λ asadmin �

{-5-} case (inputToE a _ args)
None⇒ error "Bad input (e.g. not in phase)"
Some⇒ λ args �

{-6-} (sudo (Prin "Admin") u
(snd asadmin)
(\x � (snd (repAsPost (snd asadmin)

{a} x)))
(lfoc i0 init-)

{-7-} (prove/dyn 15 _ _ >>=
none⇒ error "Unauthorized action"
some⇒ λ canDoAction �

{-8-} doaction u a args canDoAction))
{-9-} >>= λ _ � rec

Figure 3. ConfRM Main Loop

by or assigned to the principal, respectively. Readscore and Read
leave the conditions unchanged. The postcondition of Progress is
the first component of its ExtraArgs, i.e. the context determined
by replacing the current phase with the resulting one.

PostCondition : (a : Term [] (action)) (Γ : TCtx+ [])
� ExtraArgs Γ a � (k : Term [] (principal))
� Result a � TCtx+ []

PostCondition (Submit · y) Γ e k r =
(a- (Submitted · r)) :: (a- (Author · (k , r))) :: Γ

PostCondition (Review · y) Γ e k r =
(a- (Reviewed · (k , y))) :: Γ

PostCondition (BeAssigned · y) Γ e k r =
(a- (Assigned · (k , y))) :: Γ

PostCondition (Readscore · y) Γ e k r = Γ
PostCondition (Read · y) Γ e k r = Γ
PostCondition (Progress · (ph1 , ph2)) Γ e k r =
(fst e)

In writing the main server loop, we will use the following
monadic wrapper of our theorem prover, in order to test at run time
whether a given proposition holds in the current state of the server:

prove/dyn : ∀ {Γ1} � Nat � (Γ : TCtx+ []) �
(A : Propo- []) �
© Γ1 (Maybe (Proof Γ A)) (λ _ � Γ1)

2.4.3 Server Main Loop
In Figure 3 we show the code for the main loop of the ConfRM

server, implemented using the interface described above. The main
loop serves requests made by principals who wish to perform ac-

tions. Because the requests are not determined until run-time, and
authorization depends on the system state (the phase of the confer-
ence, the role of a principal), this example uses entirely dynamic
verification of security policies: the server dynamically checks that
each request is authorized just before performing it, using our the-
orem prover at run-time. The type system ensures that the appro-
priate dynamic check is made. Informally, the server loop works by
(1) reading in an action and its arguments, (2) reading in a princi-
pal, (3) acquiring the credentials to su as that principal, (4) comput-
ing the precondition of the su, (5) computing the postconditions of
performing the action, (6) su-ing as the principal, (7) proving the
principal may perform the action, (8) performing the action, and
(9) recurring. The fact that we have coalesced all of the actions into
one primitive command makes this code much more concise than it
would be otherwise, when we would have to repeat essentially this
code as many times as there are actions.

This code is rendered in Agda as follows. fix permits an IO
computation to be defined by general recursion. Because its type
is restricted to the monad, it does not permit non-terminating ele-
ments of other types, such as Proof. This fixed-point combinator
abstracts over the precondition, so it may vary in recursive calls,
but leaves the postcondition fixed throughout the loop; we leave
more general loop invariants to future work. First, main is given the
type ∀ {Γ} � © Γ Unit (λ _ � []): given any precondi-
tion, the computation returns unit and an empty postcondition (we
do not expect to run any code following main so it is not worth-
while to track the postconditions). main is defined by taking the
fixed point of the axillary function loop, which is abstracted over
the recursive call. On line (1), the loop prompts the user to en-
ter an action to perform, parseAction then parses the string to
produce a : action and args: InputArgs, and raises an er-
ror otherwise. (2) The loop prompts for a username, parses it into
a Term [] principal. (3) The loop attempts to acquire creden-
tials that "Admin" may su as the principal (e.g., by prompting for
a password). (4) The loop calls the functions make-replace to
produce the preconditions for the su, by replacing (As (Prin
"Admin")) with a+ (As u). (5) The loop calls inputToE to pro-
duce the ExtraArgs for the action from the args; for Progress,
this function computes the postcondition of the action from the cur-
rent context. (6) The loop su-s as the principal. The first replace
argument to su is the result of step (4), the proof argument is the
assumption acquired in step (3), the second replace argument is
discussed below. (7) The loop calls the theorem prover at run-time
to prove the principal may perform the requested action. (8) The
loop calls doaction and (9) recurs.

The second replace argument to su is generated using a proof
that As is preserved in the PostCondition of an action:
postPreservesAs : ∀ {a Γ e k r k’ }

� (a+ (As · k’) ∈ Γ)
� ((a+ (As · k’)) ∈ PostCondition a Γ e k r)

This is another example of using Agda to verify invariants of the
pre- and post-conditions, as in Section 2.1.4.

2.4.4 Dynamic Policy Acquisition
Finally, we describe an example of dynamic policy acquisition
in Figure 4: we read the reviewers’ paper assignments from a
database, parse the result into a context, acquire the context, and
start the main server loop with those preconditions. This is simple
in a dependently typed language because contexts themselves are
data. The function getReviewerAsgn takes a string, representing
a path to the database, and returns the list of reviewers for each
paper. The function parseReviewers then turns each of these
lists into lists of propositions, each stating the parsed reviewer is
a reviewer of the paper. A more realistic ConfRM implementation
would read a variety of other propositions from the database as well

getReviewerAsgn : ∀ {Γ} � String �
© Γ (List (List String)) (λ _ � Γ)

parseReviewers : List String � TCtx+ []

mkPolicy : ∀ {Γ} � © Γ (TCtx+ []) (λ _ � Γ)
mkPolicy = getReviewerAsgn "papers.db" >>= λ asgn �

return (ListM.fold [] (λ x � λ y �
parseReviewers x ++ y) asgn)

start = mkPolicy {[]} >>= λ ctx �
acquire ctx / _

no⇒ error "policy not accepted"
yes⇒ main

Figure 4. ConfRM Policy Acquistion

(which papers have been submitted, reviewed, etc.) The computa-
tion mkPolicy calls getReviewerAsgn and parses the results. The
computation start uses mkPolicy to generate an initial policy, ac-
quires these preconditions, and starts the main sever loop.

3. Implementation
Our Agda implementation consists of about 1400 lines of code. We
have also written about 1800 lines of example code in the embed-
ded language, including policies, monadic interfaces to primitives,
and example programs. In this section, we describe the implemen-
tation of the logic, the theorem prover, and the indexed monad.

3.1 Representing BL0

BL0 [21] extends first-order intuitionistic logic with the modal-
ity k says A. While a variety of definitions of says have been
studied (Abadi [2] overviews some of the approaches), in BL0,
says is treated as a necessitation (2) modality, and not as a
lax modality (i.e. a monad) [1, 8, 22, 24]. The definition of
says in BL0 supports exclusive delegation, where a principal

delegates responsibility for a proposition to another principal,
without retaining the ability to assert that proposition himself.
For example, consider a policy that payroll says ∀t.(HR says
employee(t)) ⊃ MayBePaid(t). Under what circumstances can
we conclude payroll says MayBePaid(Alice)? The fact that
HR says employee(Alice) should be sufficient. However, the
fact that payroll says employee(Alice) should not, as the in-
tention of the policy is that payroll delegates responsibility for
the employee predicate to human resources, without retaining
the ability to assert employee instances itself. When says is
treated as a lax modality, payroll says employee(Alice) im-
plies payroll says HR says employee(Alice), which is enough
to conclude the goal. Abstractly, we wish k says A to imply
k′ says (k says A), but not k says (k′ says A). The modal-
ity satisfies several other axioms: for example, principals say all
consequences the statements they have made (k says (p ⊃ q) en-
tails (k says p ⊃ k says q)) and principals believe what they say
is true (k says ((k says s) ⊃ s)).

3.1.1 Terms, Types, and Atomic Propositions
In the above examples, we used a variety of atomic propositions
(Mayread, Owns, etc.), which refer to several datatypes (principals,
papers, conference phases, etc.). We have parametrized the repre-
sentation of BL0 and its theorem prover over such datatypes and
atomic propositions by defining a generic datatype of first-order
terms, with free variables, over a given signature. This allows us to
specify the types, terms, and propositions for an example concisely,
while exploiting a datatype-generic definition of weakening, substi-
tution, etc., which are necessary to state the inference rules of the

logic. The following excerpt from the signature for ConfRM illus-
trates what programmers write to define an individual example:

data BaseType : Set where
string paper role action phase principal : BaseType

data Const : BaseType -> Set where
Prin : String -> Const principal
Paper : String -> Const paper
PCChair Reviewer Author Public : Const role
Init Presubmission Submission ... : Const phase

data Func : BaseType -> Type -> Set where
Review BeAssigned ... : Func action (paper)
Progress : Func action (phase ⊗ phase)

data Atom : Type -> Set where
InPhase : Atom (phase)
Assigned ... : Atom (principal ⊗ paper)
May : Atom (principal ⊗ action)
As : Atom (principal)

The programmer defines a datatype of base types, a datatype giving
constants of each type, a datatype of function symbols, and a
datatype of atomic propositions over a given type. Additionally,
the programmer must define a couple of operations on these types
(equality, enumeration of all elements of a finite type) which in a
future version of Agda could be generated automatically [5].

Types are BaseTypes, unit and pair types (τ1 ⊗ τ2). The
terms over a signature are given by a datatype Term Ω τ , where
Ω, an individual context (ICtx), represents the free variables of the
term. An ICtx is a list of BaseTypes, and represents a context of
individual variables—e.g. the context x1 : τ1, . . . , xn : τn will
be represented by the list τ1 :: ... :: τn :: []. Variables are rep-
resented by well-scoped de Bruijn indices, which are pointers into
such a list—i0 says x ∈ (x :: l), and iS says that x ∈ (y ::
l) if x ∈ l. Terms are either variables (. i), where i : τ ∈
Ω is a de Bruijn index, constants, applications of function symbols
(f · t), or [] and (t1 , t2) for unit and product types. Atomic
propositions are represented by a datatype Aprop Ω. An atomic
proposition p · t consists of an Atom paired with a term of the ap-
propriate type. We have defined weakening and substitution gener-
ically on terms and propositions, and proved several properties of
them (e.g. functoriality of weakening).

3.1.2 Propositions
BL0 propositions include conjunction, disjunction, implication,
universal and existential quantification, and the says modality:
A,B,C ::= P | A ∧B | A ∨B | A ⊃ B | >

| ⊥ | ∀x : τ .s | ∃x : τ .A | k says A

In Figure 5, we represent this syntax in Agda. Propositions (Propo)
are indexed by a context of free variables, and additionally by a po-
larity (+ or -), which will be helpful in defining a focused sequent
calculus below. Because the syntax of propositions is polarized,
there are two injections a- and a+ from atomic propositions Aprop
to negative and positive propositions, respectively. Additionally, the
shifts ↓ and ↑ include negative into positive and vice versa. The re-
maining datatype constructors correspond to the various ways of
forming propositions in the above grammar. For example, the _∧ _
constructor takes two terms of type Propo+ Ω and returns a term of
type Propo+ Ω. The constructor ∃i (existential quantification over
individuals), takes a positive proposition, in a context with one new
free variable of type τ , and returns a positive proposition in the
original context Ω.

We have suppressed the shifts up to this point in the paper for
readability. We could suppress shifts in our Agda code by imple-
menting a simple translation that, given an unpolarized proposition

data Propo : Polarity � ICtx � Set where
⊃ : ∀ {Ω} � Propo+ Ω � Propo- Ω � Propo- Ω
∀i_ : ∀ {Ω τ} � Propo- (τ :: Ω) � Propo- Ω
a- : ∀ {Ω} � Aprop Ω � Propo- Ω
↑ : ∀ {Ω} � Propo+ Ω � Propo- Ω

∨ : ∀ {Ω} � Propo+ Ω � Propo+ Ω � Propo+ Ω
∧ : ∀ {Ω} � Propo+ Ω � Propo+ Ω � Propo+ Ω
⊥ : ∀ {Ω} � Propo+ Ω
> : ∀ {Ω} � Propo+ Ω
∃i_ : ∀ {Ω τ} � Propo+ (τ :: Ω) � Propo+ Ω
says : ∀ {Ω} � Term Ω principal �

Propo- Ω � Propo+ Ω
a+ : ∀ {Ω} � Aprop Ω � Propo+ Ω
↓ : ∀ {Ω} � Propo- Ω � Propo+ Ω

Figure 5. Agda Representation of BL0 Propositions

and an intended polarization of each atom, computes a polarized
proposition with minimal shifts.

3.1.3 Proofs

Sequent calculus. Sequents in BL0 have the form Ω; ∆; Γ
k−→ A.

The context Ω gives types to individual variables (e.g. it is extended
by ∀), and the context Γ contains propositions that are assumed to
be true (e.g. it is extended by ⊃)—these are the standard contexts
of first-order logic. The context ∆ contains claims, assumptions of
the form k′ claims A; claims is the judgement underlying the
says connective [21, 33]. Finally, k, the view of the sequent, is the

principal on behalf of whom the inference is made.
The rules for says are as follows:

Ω; ∆; []
k−→ A

Ω; ∆; Γ
k0−−→ k says A

SAYSR

Ω; ∆, (k claims A); Γ, (k says A)
k0−−→ C

Ω; ∆; Γ, (k says A)
k0−−→ C

SAYSL

Ω; (∆, k claims A); (Γ, A)
k0−−→ C k ≥ k0

Ω; (∆, k claims A); Γ
k0−−→ C

CLAIMSL

In order to show k says A, one empties the context Γ of true
assumptions, and reasons on behalf of k with the goal A (rule
saysR). It is necessary to empty Γ because the facts in it may
depend on claims by the principal k0, which are not valid when
reasoning as k. The rule saysL says that if one is reasoning from
an assumption k says A, one may proceed using a new assumption
that k claims A. Claims are used by the rule claimsL, which
allows passage from a claim k claims A to an assumption thatA is
actually true. This rule makes use of a preorder on principals, and
asserts that any statements made by a greater principal are accepted
as true by lesser principals.

Focused sequent calculus. To help with defining a proof search
procedure, we present BL0 as a weakly-focused sequent calculus.
Garg [21] describes both an unfocused sequent calculus and a fo-
cused proof system for FHH, a fragment of BL0; here we give a
focused sequent calculus for all of BL0. Focusing [6] is a proof-
theoretic technique for reducing inessential non-determinism in
proof search, by exploiting the fact that one can chain together cer-
tain proof steps into larger steps. In the Agda code above, we po-
larized the syntax of propositions, dividing them into positive and
negative classes. Positive propositions, such as disjunction, require
choices on the right, but are invertible on the left: a goal C is prov-
able under assumption A+ if and only if it is provable under the
left rule’s premises. Dually, negative propositions involve choices
on the left but are invertible on the right. Weak focusing [34] forces

focus (choice) steps of like-polarity connectives to be chained to-
gether, but does not force inversion (pattern-matching) steps to be
chained together. We use weak, rather than full, focusing because
it is slightly easier to represent in Agda, and because it can some-
times lead to shorter proofs if one internalizes the identity princi-
ples (which say that A entails A)—though we do not exploit this
fact in our current prover.

The polarity of k says A is as follows: A is negative, but
k says A itself is positive. As a simple check on this, observe that
k says A is invertible on the left—one can always immediately
make the claims assumption—but not on the right—because saysR
clears the true assumptions. For example, a policy is often of
the form k1 says A1, . . . kn says An, with a goal of the form
k′ says B. It is necessary to use claimsL to turn all propositions
of the form k says A in Γ into claims in ∆ before using saysR on
the goal—if one uses saysR first, the policy would be discarded.
This polarization is analogous to 2 in Pfenning and Davies [33]
and to ! in linear logic [6], which is reasonable given that says is
a necessitation modality.

Our sequent calculus has three main judgements:

• Right focus: Ω; ∆; Γ
k−→ [A+]

• Left focus: Ω; ∆; Γ
k−→ [A-] > C

• Neutral sequent: Ω; ∆; Γ
k−→ C-

Here ∆ consists of claims k claims A- and Γ consists of posi-
tive propositions. For convenience in the Agda implementation, we
break out a one-step left-inversion judgement Ω; ∆; Γ

k−→ A+ >I

C, which applies a left rule to the distinguished proposition A+ and
then reverts to a neutral sequent. The rules are a fairly simple inte-
gration of the idea of weak focusing [34] with the focusing inter-
pretation of says described above. The interested reader can find
the inference rules for these judgements in the extended version of
this paper [28].

Agda Representation In Figure 6, we show an excerpt of the
Agda representation of this sequent calculus. First, we define a
record type for a Ctx, which tuples together the Ω, ∆, Γ, and k parts
of a sequent—we write Θ for such a tuple. Γ is represented as a list
of propositions; ∆ is represented as a list of pairs of a principal and
a proposition, written p claims A; k is a term of type principal.
Record fields are selected by writing R.x, where the type of the
record is R and the desired field is x (e.g., Ctx.rk selects the
principal from a Ctx record). Note that Ctx is a dependent record:
the true context, the claims context, and the view can mention
the variables bound in the individual context rΩ. We write TCtx+
Ω for List (Propo+ Ω). We define several helper functions on
Ctxs: sayCtx clears the Ctx of true propositions, and changes the
view of the context to its second argument. ictx (not shown) is
shorthand for Ctx.rΩ. addTrue and addClaim (not shown) add
a true proposition onto Γ or a claim onto ∆, respectively. addVar
adds a variable to Ω, and weakens the rest of the context.

When writing down the calculus on paper, it is obvious that
extending Ω does not affect Γ or ∆; any variables bound in Ω will
be bound in Ω′ ⊇ Ω. However, in Agda, it is necessary to explicitly
coerce F Ω to F Ω′ for type families F dependent on Ω. We
have defined weakening functions for many of the types indexed
by Ω: terms (weakenTerm), propositions, claims, true contexts
(weakenT+), claims contexts (weakenC), and so on.

There are 4 judgments in our weakly-focused sequent calculus;
analogously, there are 4 mutually recursive datatype declarations
representing these judgements in Agda, with one datatype construc-
tor for each inference rule. We show the constructors ∀L (for the
left focus judgement), ∃L and saysL (for the left inversion judge-
ment), saysR (for the right focus judgement), and claimsL (for

record Ctx : Set where
field rΩ : ICtx

rΓ+ : List (Propo+ rΩ)
-- pairs written (k claims A)

r∆ : List (Term rΩ principal × Propo- rΩ)
rk : Term rΩ principal

addVar : (θ : Ctx) � (A : Type) � Ctx
addVar θ τ = record {rΩ = (τ :: Ctx.rΩ θ) ;

rΓ+ = (weakenT+ (Ctx.rΓ+ θ) iS) ;
r∆ = (weakenC (Ctx.r∆ θ) iS) ;
rk = (weakenTerm (Ctx.rk θ) iS)}

sayCtx : (θ : Ctx) �
(k : Term (Ctx.rΩ θ) principal) � Ctx

sayCtx θ k = (record {rΩ = Ctx.rΩ θ ;
rΓ+ = [] ; r∆ = Ctx.r∆ θ ; rk = k})

mutual
data _`L_>_ : (θ : Ctx) � Propo- (ictx θ)

� Propo- (ictx θ) � Set where
∀L : ∀ {θ τ A C} � (t : Term (ictx θ) τ) �

θ `L (substlast A t) > C �
θ `L ∀i_ {ictx θ}{τ} A > C

...
data _`I_>_ : (θ : Ctx) � (Propo+ (ictx θ))

� Propo- (ictx θ) � Set where
∃L : ∀ {θ τ A C}

� (addTrue (addVar θ τ) A) ` (weakenP C iS)
� θ `I (∃e τ A) > C

saysL : ∀ {θ k s B}
� addClaim θ (k claims s) ` C
� θ `I (k says s) > C

...
data _`R_ : (θ : Ctx) � Propo+ (ictx θ) � Set where

saysR : ∀ {θ k A}
� (sayCtx θ k) ` A
� θ `R (k says A)

...
data _`_ : (θ : Ctx) � Propo- (ictx θ) � Set where

claimsL : ∀ {θ k A C}
� (k claims A) ∈ Ctx.r∆ θ
� θ `L A > C � k ≥ Ctx.rk θ
� θ ` C

...

Figure 6. Agda representation of proofs (exceprt)

the neutral sequent judgement). For the most part, the rules are a
straightforward transcription of the sequent calculus rules [28]. In
∀L, the function substlast substitutes a term for the last variable
in a proposition; we have implemented substitution for individual
variables for each of the syntactic categories. In ∃L, it is necessary
to weaken the goal with the new variable, which is tacit in on-paper
presentations.

Properties Because the sequent calculus is cut-free, consistency
of closed proofs is immediate:

Consistency: For all principals k, there is no derivation of
[]; []; []

k−→↑ ⊥.

Proof: no rule concludes⊥ in right focus, and in the empty context
no left focus or left inversion rules apply.

Identity and cut can be proved using the usual syntactic meth-
ods, adapting Garg’s proof [21] for an unfocused sequent calculus
to weak focusing, following Pfenning and Simmons [34].

3.2 Proof Search
We have implemented a simple proof-producing theorem prover for
BL0:

prove : Nat � (θ : Ctx) � (A : Propo- (ictx θ))
� Maybe (θ ` A)

prove takes a depth bound, a context, and a proposition, and
attempts to find a proof of θ ` A with at most the given depth.
The prover is certified: when the prover succeeds, it returns a proof,
which is guaranteed by type checking to be well-formed. When the
prover fails, it simply returns None. The prover is implemented by
around 200 lines of Agda code.

Our prover is quite naïve, but it suffices to prove the examples in
this paper. For the most part, the prover backchains over the focus-
ing rules. However, whereas the above sequent calculus was only
weakly focused, the prover is fully focused, in that it eagerly applies
invertible rules, which avoids backtracking over different applica-
tions of them. If the goal is right-invertible, the prover applies right
rules. Once the goal is not right-invertible (an atom or a shift ↑ A+),
the prover fully left-inverts all of the assumptions in Γ. Inverting a
context Γ breaks up the positive propositions using left rules, gen-
erating a list of non-invertible contexts Θ1, ...,Θk such that, if for
every i, Θi ` C, then Θ ` C. Once the sequent has been fully
inverted, the prover tries right-focusing (if the goal is a shift ↑ A+)
and left-focusing on all assumptions in Γ and claims in ∆, until
one of these choices succeeds. The focus phases involves further
backtracking over choices (e.g., which branch of a disjunction to
take). The focus rules for quantifiers (∀E and ∃I) require guess-
ing an instantiation of the quantifier. Our current implementation is
brute-force: it simply computes all terms of a given type in a given
context and tries each of them in turn—we have only considered
individual types with finitely many inhabitants.

The prover achieves tolerable compile times on the small ex-
amples we have considered so far (1 to 13 seconds). If it proves
too slow for some examples, we have several options: First, we
can improve our implementation—e.g. by implementing unifica-
tion, which will eliminate much of the branching from quantifiers,
or by doing a better job of clause selection. Second, we could con-
nect Agda with an external theorem prover, following Kariso [25].
Garg has implemented theorem prover for BL0 in ML [21], which
we could integrate soundly by writing a type checker for the certifi-
cates it produces. Third, we could optimize Agda itself, by fixing
some known inefficiencies in Agda’s compile-time evaluation.

3.3 Computations
The monadic interfaces presented in Section 2 are currently treated
as refinement types on Haskell’s IO monad, which is exposed
through the Agda foreign function interface. The implementations
of proof-carrying file operations simply ignore their proof argu-
ments. fix is compiled using general recursion in Haskell. In this
operational model, programs written in Aglet adhere to the secu-
rity policies, but no guarantees are made about programs that can
access, e.g., the raw file system operations. We discuss alternatives
in Section 5 below.

4. Related Work
Aglet implements security-typed programming in the style of
Aura [24], PCML5 [9], Fine [38], and previous work by Avijit
and Harper [8] (henceforth AH), which integrate authorization log-
ics into functional/imperative programming languages. Our main
contribution relative to these languages is to show how to support
security-typed programming within an existing dependently-typed
language. There are also some technical differences between these
languages and ours:

First, Aura, PCML5, and AH interpret says as a lax modality,
whereas BL0 interprets it as a necessitation modality to support ex-
clusive delegation; Fine uses first-order classical logic and does not
directly support the says modality. The context-clearing necessita-
tion modality is more challenging to represent than a lax modality.

Second, unlike these four languages, our language treats propo-
sitions and proofs as inductively defined data, which has several
applications: In Aura, all proof-carrying primitives log the supplied
proofs for later audit; the programmer could implement logged
operations on top of our existing interface by writing a function
toString : Proof Γ A -> String by recursion over proofs.
Recursion over propositions is also essential for writing our theo-
rem prover inside of Agda.

Third, our indexed monad of computations allows us to encode
computation on behalf of a principal, following AH. In Aura, all
computation proceeds on behalf of a single distinguished principal
self. In PCML5, a program can authenticate as different princi-
pals, but the credentials are less precise: in PCML5, the program
authenticates as k, whereas in AH the program acquires only the
ability to su from a given k′ to k—which may be a useful restric-
tion if the program is subsequently no longer running as k′. Fine
does not track authentication as a primitive notion, though it seems
likely it could be encoded using an As predicate and affine types.

Fourth, in PCML5, acquire uses theorem proving to deduce
consequences of the policy, whereas in our language acquire only
tests whether a state-dependent atom or a statement by a principal
is literally in the policy, and a separate theorem prover deduces
consequences from the policy. We separate theorem proving from
acquire so that we may also use the same theorem prover at
compile-time to statically discharge proof obligations. PCML5 and
AH make use of a theorem prover only at run-time, whereas Fine
uses theorem proving only at compile-time.

Fifth, PCML5 is a language for spatially distributed authoriza-
tion, where resources and policies are located at different sites on a
network. We have shown how to support ML5-style spatial distri-
bution using our indexed monad, but we leave spatial distribution
of policies to future work.

Sixth, the operational semantics of both PCML5 and AH in-
clude a proof-checking reference monitor; we have not yet consid-
ered such an implementation.

Several other languages provide support for verifying security
properties by type checking. For example, Fournet et al. [19] de-
velop a type system for a process calculus, and Bengtson et al. [11]
for F#, both of which can be used to verify authorization policies
and cryptographic protocols. This work addresses important issues
of concurrency, which we do not consider here. A technical dif-
ference is that, in their work, proofs are kept behind the scenes
(e.g., in F7, propositions are proved by the Z3 theorem prover). In
contrast, our language makes the proof theory directly available to
the programmer, so that propositions and proofs can be computed
with (for logging or run-time theorem proving) and so that proofs
can be constructed manually when a theorem prover fails. Another
example of a language that does not give the programmer direct ac-
cess to the proof theory is PCAL [13], an extension of BASH that
constructs the proofs required by a proof-carrying file system [23];
proof construction is entirely automated, but sometimes inserts run-
time checks.

Our indexed monad was inspired by HTT [30]. RIF [12] also
investigates applications of indexed monads to security-typed pro-
gramming, but there are some technical differences: First, RIF is
a new language where refinement types (using first-order classical
logic) and a refined state monad are primitive notions, whereas we
embed an authorization logic and an indexed monad in an existing
dependently typed language. Second, RIF’s monad is indexed by

predicates on an explicit representation of the system state, whereas
we index by policies Γ that describe an implicit ambient state.

Many security-typed languages address the problem of enforc-
ing information flow policies (see Abadi et al. [4], Chothia et al.
[15] for but a couple of examples). We follow Russo et al. [36],
Swamy et al. [38] in representing information flow using an ab-
stract type constructor (e.g., a monad or an applicative functor).
Fable [37] takes a different approach to verifying access-control,
information flow, and integrity properties, by providing a type of
labelled data that is treated abstractly outside of certain policy por-
tions of the program. This mechanism facilitates checking security
properties (by choosing the labels appropriately and implementing
policy functions) and proving bi-simulation properties of the pro-
grams that adhere to these policies.

DeYoung and Pfenning [16] describe a technique for represent-
ing access control policies and stateful operations in a linear autho-
rization logic. Our approach to verifying context invariants, as in
Section 2.1.4, is inspired by their work.

The literature describes a growing body of authorization log-
ics [1, 2, 3, 17, 20, 21]. We chose BL0 [21], a simple logic that
supports the expression of decentralized policies and whose says
connective permits exclusive delegation.

Appel and Felten [7] pioneered the use of proof-carrying autho-
rization, in which a system checks authorization proofs at run-time.
Several systems have been built using PCA [10, 23, 40]. Like many
security-typed languages, we use dependently typed PCA to check
authorization proofs at compile-time through type checking.

5. Conclusion
In this paper, we have described Aglet, a library embedding
security-typed programming in a dependently-typed programming
language. There are many interesting avenues for future work:
First, we may consider embedding an authorization logic such as
full BL [20] that accounts for resources that change over time.
Second, we have currently implemented the monadic computation
interface on top of unguarded Haskell IO commands, which pro-
vides security guarantees for well-typed programs. To maintain
security in the presence of ill-typed attackers, we may instead im-
plement our interface using a proof-carrying run-time system such
as PCFS [23]. Following PCML5 [9], we may then be able to prove
a progress theorem showing that well-typed programs always pass
the reference monitor. Another intriguing possibility is to formalize
the operational behavior of computations directly within Agda—
e.g. using an algebraic axiomatization [35]. Third, in this paper we
have shown examples of entirely static and entirely dynamic verifi-
cation; we would like to consider examples that mix the two. This
will require using reflection to represent Agda judgements as data,
so that our theorem prover does not get stuck on open Agda terms.
Fourth, we have shown a few small examples of using Agda to
reason about the class of contexts that is possible given a particular
monadic interface. In future work, we would like to explore ways of
systematizing this reasoning (e.g., by using linear logic to describe
transformations between contexts, as in DeYoung and Pfenning
[16]). We would also like to use Agda to analyze global properties
of a particular monadic interface (such as proving a principal can
never access a resource). Once we have circumscribed the contexts
generated by a particular interface, we can prove such properties by
induction on BL0 proofs. Fifth, we would like to implement more
significant examples, such as a larger portion of ConfRM.

Acknowledgements We thank Frank Pfenning, Robert Harper,
Kumar Avijit, Deepak Garg, and Rob Simmons for helpful discus-
sions about this work. We thank Frank Pfenning, Robert Harper,
and several anonymous referees for feedback on previous drafts of
this article.

References
[1] M. Abadi. Access control in a core calculus of dependency. In

Internatonal Conference on Functional Programming, 2006.

[2] M. Abadi. Variations in access control logic. In International Confer-
ence on Deontic Logic in Computer Science, pages 96–109. Springer-
Verlag, 2008.

[3] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for
access control in distributed systems. ACM Transactions on Program-
ming Languages and Systems, 15(4):706–734, September 1993.

[4] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus
of dependency. In ACM Symposium on Principles of Programming
Languages, pages 147–160. ACM Press, 1999.

[5] T. Altenkirch and C. McBride. Generic programming within depen-
dently typed programming. In IFIP TC2 Working Conference on
Generic Programming, Schloss Dagstuhl, 2003.

[6] J.-M. Andreoli. Logic programming with focusing proofs in linear
logic. Journal of Logic and Computation, 2(3):297–347, 1992.

[7] A. W. Appel and E. W. Felten. Proof-carrying authentication. In ACM
Conference on Computer and Communications Security, pages 52–62,
1999.

[8] K. Avijit and R. Harper. A language for access control. Technical
Report CMU-CS-07-140, Carnegie Mellon University, Computer Sci-
ence Department, 2007.

[9] K. Avijit, A. Datta, and R. Harper. Distributed programming with
distributed authorization. In ACM SIGPLAN-SIGACT Symposium on
Types in Language Design and Implementation, 2010.

[10] L. Bauer, S. Garriss, J. M. Mccune, M. K. Reiter, J. Rouse, and
P. Rutenbar. Device-enabled authorization in the Grey System. In
Proceedings of the 8th Information Security Conference, pages 431–
445. Springer Verlag LNCS, 2005.

[11] J. Bengtson, K. Bhargavan, C. Fournet, A. Gordon, and S. Maffeis.
Refinement types for secure implementations. In Computer Science
Logic, 2008.

[12] J. Borgström, A. D. Gordon, and R. Pucella. Roles, Stacks, Histories:
A Triple for Hoare. Technical Report MSR-TR-2009-97, Microsoft
Research, 2009.

[13] A. Chaudhuri and D. Garg. PCAL: Language support for proof-
carrying authorization systems. In Proceedings of the 14th European
Symposium on Research in Computer Security, September 2009.

[14] S. Chong, A. C. Myers, K. Vikram, and
L. Zheng. Jif reference manual. Available from
http://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html,
February 2009.

[15] T. Chothia, D. Duggan, and J. Vitek. Type-based distributed access
control (extended abstract). In Computer Security Foundations Work-
shop, 2003.

[16] H. DeYoung and F. Pfenning. Reasoning about the consequences of
authorization policies in a linear epistemic logic. In Workshop on
Foundations of Computer Security, 2009.

[17] H. DeYoung, D. Garg, and F. Pfenning. An authorization logic with
explicit time. In IEEE Computer Security Foundations Symposium,
2008.

[18] D. J. Dougherty, K. Fisler, and S. Krishnamurthi. Specifying and
reasoning about dynamic access-control policies. In International
Joint Conference on Automated Reasoning, pages 632–646. Springer,
2006.

[19] C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for
authorization in distributed systems. In Computer Science Logic,
2007.

[20] D. Garg. Proof Theory for Authorization Logic and its Application to a
Practical File System. PhD thesis, Carnegie Mellon University, 2009.

[21] D. Garg. Proof search in an authorization logic. Technical Report
CMU-CS-09-121, Computer Science Department, Carnegie Mellon
University, April 2009.

[22] D. Garg and F. Pfenning. Non-interference in constructive authoriza-
tion logic. In Computer Security Foundations Workshop, pages 183–
293, 2006.

[23] D. Garg and F. Pfenning. PCFS: A proof-carrying file system. Tech-
nical Report CMU-CS-09-123, Carnegie Mellon University, 2009.

[24] L. Jia, J. A. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr, and
S. Zdancewic. Aura: A programming language for authorization and
audit. In ACM SIGPLAN International Conference on Functional
Programming, 2008.

[25] K. Kariso. Integrating Agda and automated theorem proving tech-
niques. Talk at Dependently Typed Programming Workshop, 2010.

[26] S. Krishnamurthi. The CONTINUE server (or, How I administered
PADL 2002 and 2003). In International Symposium on Practical
Aspects of Declarative Languages, pages 2–16. Springer-Verlag, 2003.

[27] D. R. Licata and R. Harper. A monadic formalization of ML5.
In Pre-preceedings of Workshop on Logical Frameworks and Meta-
languages: Theory and Practice, July 2010.

[28] J. Morgenstern and D. R. Licata. Security-typed programming within
dependently typed programming. Technical Report CMU-CS-10-114,
Carnegie Mellon University, 2010.

[29] T. Murphy, VII. Modal Types for Mobile Code. PhD thesis, Carnegie
Mellon, January 2008. Available as technical report CMU-CS-08-126.

[30] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and sep-
aration in Hoare Type Theory. In ACM SIGPLAN International Con-
ference on Functional Programming, pages 62–73, Portland, Oregon,
2006.

[31] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal.
Ynot: Reasoning with the awkward squad. In ACM SIGPLAN Inter-
national Conference on Functional Programming, 2008.

[32] U. Norell. Towards a practical programming language based on de-
pendent type theory. PhD thesis, Chalmers University of Technology,
2007.

[33] F. Pfenning and R. Davies. A judgmental reconstruction of modal
logic. Mathematical Structures in Computer Science, 11:511–540,
2001.

[34] F. Pfenning and R. J. Simmons. Substructural operational semantics
as ordered logic programming. In IEEE Symposium on Logic In Com-
puter Science, pages 101–110, Los Alamitos, CA, USA, September
2009. IEEE Computer Society.

[35] G. Plotkin and M. Pretnar. Handlers of algebraic effects. In European
Symposium on Programming, pages 80–94. Springer-Verlag, 2009.

[36] A. Russo, K. Claessen, and J. Hughes. A library for light-weight
information-flow security in Haskell. In ACM SIGPLAN Symposium
on Haskell, pages 13–24. ACM, 2008.

[37] N. Swamy, B. J. Corcoran, and M. Hicks. Fable: A language for en-
forcing user-defined security policies. In IEEE Symposium on Security
and Privacy, pages 369–383. IEEE Computer Society, 2008.

[38] N. Swamy, J. Chen, and R. Chugh. Enforcing stateful authorization
and information flow policies in Fine. In European Symposium on
Programming, 2010.

[39] J. A. Vaughan, L. Jia, K. Mazurak, and S. Zdancewic. Evidence-
based audit. In IEEE Computer Security Foundations Symposium,
June 2008.

[40] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. Authentication in
the Taos operating system. ACM Transactions On Computer Systems,
12(1):3–32, 1994.

