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We study the efficiency of simple auctions in the presence of complements. To this end, we introduce a new
hierarchy over monotone set functions that we refer to as Maximum over Positive-Supermodular (MPS).
The MPS hierarchy is parameterized by a single integer d that captures the level of complementarity. Any
valuation in MPS-d is in MPH-(d+1) [Feige et al. 2015], and the highest level in the hierarchy (MPS-(m−1),
where m is the number of items) captures all monotone functions. We show that when all agents have valu-
ations in MPS-d, the single-bid auction, introduced by [Devanur et al. 2015], has price of anarchy of at most
O(d2 log(m/d)), with respect to coarse correlated equilibria. An improved bound of O(d logm) is established
for an interesting subclass of MPS-d. In addition, we study hybrid mechanisms of simple auctions. These are
mechanisms that choose at random one of two simple mechanisms. Hybrid mechanisms preserve the sim-
plicity of the mechanisms in their support. In particular, standard regret minimization algorithms converge
to correlated and coarse correlated equilibria in polynomial time. We show that the hybrid mechanism that
is composed of the single bid auction and the single-item first price auction for the grand bundle has a price
of anarchy of at most O(

√
m) for any profile of agent valuations. This is the best approximation to social

welfare that can be achieved by any polytime algorithm.
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1. INTRODUCTION
The main focus of algorithmic mechanism design is to decide how to allocate limited
resources to strategic agents while taking into account computational limitations. A
long line of work studied truthful mechanisms, and while many times achieving guar-
antees that match the algorithmic problem (in which the agents are not strategic but
always truth telling), many of the designed mechanisms turned out quite complex al-
gorithmically and complicated to describe.

Practical concerns have led recent study to forgo truthfulness in lieu of simple mech-
anism formats. Simultaneous item auctions (SIAs), in particular, have constant-factor
welfare approximations at equilibrium for subadditive buyers [Feldman et al. 2013a],
and have an arguably simple format: each buyer submits a single sealed bid for each
item separately, and each item’s winner is the highest bidder for that item. Unfortu-
nately, SIAs have a marked lack of simplicity in another respect: there is initial evi-
dence that the problem of computing Nash equilibra [Dobzinski et al. 2015], approxi-
mate Bayes Nash equilibria, correlated equilibria, or verifying best-responses [Cai and
Papadimitriou 2014] are likely intractable.

Therefore, while SIAs have a simple format, the strategic behavior induced by the
mechanism is quite complex. A mechanism with a simple format but one that is diffi-
cult to play leads one to question the underlying assumption that an equilibrium will
be reached, and in turn to question the applicability of the price of anarchy bounds.

Further work [Devanur et al. 2015] introduced another mechanism whose format
was “simple” with a strategy space small enough that no-regret learning algorithms
(for computing correlated and coarse correlated equilibria of the mechanism) run in
polynomial time. This mechanism was coined the single bid mechanism, and was
shown to have a Price of Anarchy (PoA) of O(logm) for subadditive buyers, where m
is the number of items. This upper bound on the PoA, while worse than that of SIAs,



should apply to the welfare achieved by polynomially bounded agents (unlike those for
SIAs).

The format of the single-bid mechanism was generalized by Braverman et al. [2016],
who defined the notion of a priori learnable interpolation (ALI) mechanisms. An ALI
mechanism has two phases. First, agents report O(logm) bits of information to the
mechanism. The mechanism computes some truthful mechanism as a function of all
agents’ reports. Second, the agents interact with this truthful mechanism. Since the
second interaction is with a truthful mechanism, agents strategize only over their
reports in the first phase. To find reports for the first round which form an equilib-
rium, one can trivially employ no-regret learning in polynomial time over the possi-
ble poly(m) reports. Thus, these mechanisms are strategically simple. If the truthful
mechanism selected at the second phase always has a simple format, then the ALI
mechanism will also have a simple format.

Both SIAs and single-bid auctions provide good approximation guarantees for
complement-free (i.e., subadditive) bidders. However, valuations with complementar-
ities arise naturally in many contexts, such as radio spectrum auctions, auctions for
landing and takeoff time slots in airports, auctions for computational resources in the
cloud, and more (see [Cramton et al. 2006]).

In this work, we aim to design mechanisms for bidders with complementarities,
which simultaneously approximate optimal welfare at equilibrium, have a simple for-
mat, and are strategically simple (as defined implicitly by Devanur et al. [2015] and
formally by Braverman et al. [2016]). Formally, we wish to find mechanisms which run
in polynomial time, whose equilibria have high welfare, and whose equilibria can be
found in a computationally efficient manner, when bidders’ valuations are not neces-
sarily subadditive. We begin by noting that the first candidate, the single-bid mech-
anism, fails miserably to achieve a good approximation to welfare in the presence of
complements, even at Nash equilbrium. In particular, even when buyers’ valuations
exhibit the lowest level of complementarity in the sense of Feige et al. [2015], the price
of anarchy of the single-bid auction can be as high as Ω(m) [Devanur et al. 2013].

Consequently, with the hope to obtain nontrivial welfare guarantees via simple
mechanisms for settings with complementarities, we proceed in two different direc-
tions. First, we analyze the known mechanisms under restricted complementarities.
Second, we design new simple mechanisms with an eye towards complementarities.

Several classes of valuations with restricted complements have been proposed in the
literature: (1) positive hypergraphs with rank at most k (PH-k), where the valuation
is represented by a weighted hypergraph, the hyperedges have positive weights, and
are of size at most k. The valuation for a set of items S is the sum of the weights of the
hyperedges contained in S. (2) maximum over PH-k (MPH-k), where the value for a set
of items S is the maximum value assigned to S across multiple PH-k valuations. (3)
supermodular-d (SM-d), where the following graph is considered: the nodes correspond
to goods, and an edge (i, j) indicates complementarity between the goods i and j1. The
complementarity level d corresponds to the maximum degree of any node in the graph.

While for SIAs, the PoA for MPH-k is bounded by 2k [Feige et al. 2015], for single
bid auctions, the PoA can be linear in m even for PH-2. As for SM-d valuations, two
goods j, j′ share an edge if there is some set for which they display complementarity,
and those sets may be large, or overlapping with other items. For this reason, this
assumption does not appear to be directly useful (by itself) in proving that the single
bid auction format has small price of anarchy.

To address this problem, we introduce a new hierarchy of valuations which we term
Maximum over Positive Supermodular d (MPS-d). These are valuations that are a max-

1Goods i and j are said to exhibit complementarity if there exists some set S such that v(j|S ∪ i) > v(j|S).



imum over a collection of SM-d valuations, each of which has a positive hypergraph
representation. This hierarchy is complete, in the sense that it contains all (normal-
ized) monotone valuations for some level in the hierarchy.

Our main result shows that, when agents have MPS-d valuations, the single-bid
auction guarantees approximate efficiency.

Theorem: When agents have MPS-d valuations, the single-bid auction has a price of
anarchy of at most (d+1)

1−e−(d+1) · (d + 2) · H m
d+1

(= O(d2 log(m/d))) w.r.t. coarse correlated

equilibria2.

Our second result shows that a generalization of the single bid auction has price of
anarchy O(

√
m) for general valuations. We first observe that for general valuations,

either the grand bundle auction, which sells the grand bundle in a first-price auction,
has a price of anarchy of at most O(

√
m), or the single-bid auction has a price of an-

archy of at most O(
√
m). We consider the hybrid mechanism which solicits two bids,

one for the grand bundle auction and one for the single-bid auction, and then random-
izes between the two auctions, using the corresponding bids from the agents. We show
that the hybrid mechanism obtains a price of anarchy of O(

√
m), while maintaining

strategic simplicity.

Theorem: (Informal) The hybrid mechanism that randomizes between the single bid
auction and the grand bundle auction achieves a price of anarchy at most 4

√
m

1−e−1 for
general valuations.

This bound matches the best-known approximation bounds in polynomial time (as-
suming access to a demand oracle) by truthful mechanisms [Dobzinski 2007; Dobzinski
et al. 2006; Lavi and Swamy 2005]. It is also known that it is impossible to obtain bet-
ter bounds in polynomial time [Nisan and Segal 2006]. While these mechanisms are
truthful, they are quite complicated. Another advantage of the hybrid mechanism is
that any agent can purchase any item by submitting sufficiently high bids3. It is also
known that SIAs cannot achieve a better price of anarchy bound for general valuations
[Hassidim et al. 2011].

Of independent interest may be our notion of piecewise smoothness, which is a re-
laxation of smoothness [Syrgkanis and Tardos 2013]. If, for every valuation profile v,
there exist some λv, µv for which a mechanism is (λv, µv)-smooth, we say that the
mechanism is maxv

max{µv,1}
λv

-piecewise smooth. It follows from standard techniques
that the price of anarchy of ρ-piecewise smooth mechanisms is at most ρ (with respect
to coarse correlated equilibrium).

1.1. Related work
There has been a great deal of recent focus on simple mechanism design. These mech-
anisms achieve simplicity of format while trading off the optimality of the allocation
they produce; the efficiency of simple, non-truthful mechanisms is measured using the
price of anarchy. The goal of this line of research has been to design simple mechanisms
whose price of anarchy is as small as possible in as general a setting as possible.

2For ease of exposition Hx denotes the x-th harmonic number when x is an integer and Hbxc +1 otherwise.
3This is in contrast to the universally truthful framework presented by [Dobzinski et al. 2006], which
achieves the same

√
m approximation but uses a constant fraction of bidders to estimate necessary reserve

prices; these bidders are withheld from purchasing items.



Sequential first-price item auctions have been shown to yield a constant price of
anarchy for unit-demand bidders, with respect to subgame perfect equilibrium4 [Leme
et al. 2012] and Bayes-Nash equilibria [Syrgkanis and Tardos 2012]. This efficiency
breaks for more general classes of valuations than unit-demand bidders: even with one
additive bidder and n−1 unit-demand bidder, the pure Nash PoA can be Ω(m) [Feldman
et al. 2013b].

The techniques for upper-bounding the Bayes-Nash PoA were shown to be generally
useful: if one bounds a mechanism’s PoA using a smoothness argument (introduced
for auctions by Syrgkanis and Tardos [2013], which is related to the smoothness of a
game [Roughgarden 2009]), then PoA guarantees naturally extend to coarse correlated
equilbria of the complete information game as well as Bayes-Nash equilibria.

The study of simultaneous item auctions was initiated by Christodoulou et al. [2008],
who showed that when buyers’ valuations are submodular and i.i.d., the Bayesian PoA
of second-price SIAs is at most 2, and that Pure Nash equilibria can be computed in
polynomial time in the full-information setting for submodular buyers.

The analysis of the Price of Anarchy was extended to subadditive bidders
by Bhawalkar and Roughgarden [2012], who showed that Bayes-Nash equilibria can
exhibit PoA of at most O(log(m)).

First-price simultaneous item auctions have been studied by Hassidim et al. [2011].
They showed that pure Nash equilibria (when they exist) are fully efficient, but that
mixed equilibria can have PoA of Ω(

√
m) for general valuations. In addition, they

showed that the price of anarchy for both coarse correlated equilibria with complete
information and Bayes-Nash equilibria is O(m) for general valuations, O(logm) for
subadditive valuations, and O(1) for XOS valuations.

SIAs were then shown to have constant PoA at Bayes-Nash equilibria for subaddi-
tive buyers [Feldman et al. 2013a], for both first and second price payment rules. This
result is tampered somewhat by a string of evidence suggesting that the problem of
computing Nash equilibra [Dobzinski et al. 2015] (for subadditive bidders), approxi-
mate Bayes-Nash equilibria (even for a mix of unit-demand and additive bidders), cor-
related equilibria, or verifying best-responses [Cai and Papadimitriou 2014] are likely
intractable.

Another simple auction format that does allow for efficient computation of its coarse
correlated equilibria (using no-regret learning algorithms and demand oracles) is the
single-bid auction. In this auction, each bidder submits a single real number, and buy-
ers (in descending order of their bids) choose a bundle amongst the remaining items,
paying their bid for each item. This auction format was introduced by Devanur et al.
[2015], where the authors showed its price of anarchy of O(logm) for coarse correlated
equilibria with subadditive bidders. The computational efficiency relied on the mecha-
nism having a single round of strategic play which has a small action space, followed by
a round of truthful behavior where agents select a utility-maximizing bundle. Braver-
man et al. [2016] showed that this was essentially the best welfare one could achieve
using any interpolation protocol which first has a single round of strategic play over a
small action space, followed by some nonadaptive posted price mechanism.

We note thatO(
√
m)-welfare approximation guarantees are already known for truth-

ful mechanisms [Dobzinski 2007; Dobzinski et al. 2006; Lavi and Swamy 2005] as well
as for outcomes resulting from a sequence of best responses [Lucier 2010; Lucier and
Borodin 2010]. The truthful mechanisms forego simplicity for the sake of truthfulness.
The mechanisms presented in Lucier [2010] and Lucier and Borodin [2010] consist of a
greedy allocation rule over single minded bids (bi, Si) ∈ R×2m and either pay-your bid
or critical payments. The welfare guarantees only hold for bidders who can compute

4The natural extension of Nash Equilibrium to sequential games.



best-response single-minded bids (bi, Si); this assumption is not obviously compara-
ble to our assumption that bidders can compute answers to uniform-priced demand
queries Si ∈ argmaxS⊆S′vi(S)− b · |S| for some fixed b.

Several notions of hierarchical restricted complements have been introduced in the
literature. Abraham et al. [2012] introduce positive hypergraph representations of val-
uations with rank at most k, PH-k, give k-approximation algorithms for welfare ap-
proximation and O(logkm)-approximate truthful mechanisms for this class (and show
the algorithmic result is the best possible in polynomial time unless P = NP ). Feige
and Izsak [2013] introduce the notion of supermodular degree (at most) d, SM-d. When
valuations are in SM-d, they show APX-hardness of answering demand queries for
SM-d for d ≥ 3, and construct two (d + 2)-approximation algorithms for welfare max-
imization. Feige et al. [2015] introduce a complete hierarchy of monotone functions,
the maximum over positive hypergraphs with rank at most k, MPH-k. They give a
(k+ 1)-approximation to welfare maximization for this class, and show that SIAs have
a price of anarchy at most 2k when buyers’ valuations are contained in MPH-k.

Simple auction design has also been studied in the context of revenue maximiza-
tion, both in single-parameter [Devanur et al. 2011; Dhangwatnotai et al. 2010; Hart-
line and Roughgarden 2009; Morgenstern and Roughgarden 2015] and multiparam-
eter [Babaioff et al. 2014; Chawla et al. 2007, 2010; Rubinstein and Weinberg 2015;
Yao 2015] contexts. These works study the revenue that can be obtained with simple
mechanisms.

2. PRELIMINARIES
A combinatorial auction design problem consists of a set N of n agents, and a set of
goods [m] = {1, 2, . . . ,m}. Each agent i has a private valuation function vi : 2[m] → R+.
We use v to denote the valuation profile (vi)i∈N . We also write v = (vi,v−i), where
v−i denotes the valuations of all agents other than i. We design auctions which al-
locate each agent i a set of goods Si, such that the social welfare SW(S) =

∑
i vi(Si)

is (approximately) maximized. Let OPT(v) be an allocation that maximizes the social
welfare for the valuation profile v. Fixing an auction and the behavior of all n agents,
each agent is charged some payment Pi ≥ 0. An agent i with valuation vi who is allo-
cated a set of items Si and charged Pi has quasi-linear utility ui = vi(S) − Pi. We will
assume agents will behave to maximize this utility.

A mechanism is truthful if truth-telling is a dominant strategy; i.e., each agent max-
imizes its utility by reporting truthfully, regardless of its valuation and other agents’
actions. An interpolation mechanism is a communication protocol with two phases.
The first phase is non-truthful, and its output is a truthful mechanism.

Definition 2.1. (Braverman et al. [2016]) An interpolation mechanism is a priori
learnable if the first phase contains a single simultaneous broadcast round of commu-
nication, and the per-agent communication is O(logm).

The following observation describes the key property that motivates the study of a
priory learnable interpolation (ALI) mechanisms.

OBSERVATION 2.2. [Braverman et al. 2016] An agent can run a regret-minimizing
algorithm over her strategies in an a priori learnable interpolation mechanism (ALI)
in time/space poly(m). Therefore, a correlated equilibrium of any ALI can be found in
poly-time, and correlated equilibria arise as the result of poly-time distributed regret
minimization.

The Single-bid auction. The single-bid auction, recently introduced by Devanur et al.
[2015], is an ALI mechanism. In the first phase the auctioneer solicits a single bid



bi ∈ R+ from each agent i. In the second phase the auctioneer sequentially approaches
the agents, in a decreasing order of their bids (ties are broken arbitrarily), and offers
each agent i to purchase any of the items that have not been purchased yet, at a per-
item price of bi. We assume that agents maximize their utility: when offered a set of
items U ⊆ [m], agent i selects a set Si ∈ arg maxS⊆U vi(Si)− |Si| · bi. Notice that fixing
the first phase of the single-bid auction, the second phase is truthful; that is, reporting
a set in arg maxS⊆U{vi(Si)−|Si|·bi}maximizes utility. Therefore, we assume that agent
i behaves strategically only when reporting her bid in the first phase, and truthfully
selects a utility-maximizing set in the second phase. Assuming that a single bid can
be expressed using communication size of O(logm), the singel bid auction is an ALI
mechanism.

Price of Anarchy and smoothness.. The allocation resulting from strategic play in
the single-bid auction can result in a sub-optimal allocation of goods. Observation 2.2
implies that agents employing no-regret algorithms will converge to an (approximate)
correlated or coarse correlated equilibrium. Therefore, it is of interest to provide effi-
ciency guarantees on correlated and coarse equilibria. This efficiency is measured via
the price of anarchy (PoA), which is the ratio of the optimal social welfare to the wel-
fare at the worst possible equilibrium. Given an equilibrium eq, denote by SW(eq) the
social welfare at this equilibrium.

Definition 2.3. Let E denote any solution concept for mechanismM, and let V be
a class of valuation profiles. Then the price of anarchy (PoA) and the price of stability
(PoS) ofM with respect to E when the agents’ valuation profile is in V are:

PoA = max
v∈V

max
eq∈E

SW(OPT (v))

SW(eq)
PoS = max

v∈V
min
eq∈E

SW(OPT (v))

SW(eq)

All our positive results apply to coarse correlated equilibria.

Definition 2.4. (Coarse Correlated Equilibrium) An α-coarse correlated equilib-
rium is a joint distribution σ over bid vectors, such that for each agent i and bid b′i:

E
b∼σ

[ui(b)] ≥ E
b∼σ

[ui(b
′
i,b−i)]− α

Smoothness for games was introduced by Roughgarden [2009] and later extended
for the context of mechanisms by Syrgkanis and Tardos [2013]. The smoothness frame-
work provides a method for proving price of anarchy upper bounds for various solution
concepts.

Definition 2.5. (Syrgkanis and Tardos [2013]) A mechanismM is (λ, µ)-smooth for
a class of valuations V = ×iVi if for any valuation profile v ∈ V, there exists a (possibly
randomized) action profile a∗i (v) such that for every action profile a:∑

i

E
a′i∼a∗i (v)

[ui(a
′
i,a−i; vi)] ≥ λ · SW(OPT (v))− µ

∑
i

Pi(a) (1)

THEOREM 2.6. (Syrgkanis and Tardos [2013]) If a mechanism is (λ, µ)-smooth then
the price of anarchy w.r.t. coarse correlated equilibria is at most max{1,µ}

λ .

2.1. Categories of valuation functions
A set function f : 2[m] → R+ is normalized if f(∅) = 0 and monotone if f(T ) ≤ f(S)
for every T ⊆ S. As standard, we assume that all valuations are normalized and
monotone. A hypergraph representation of a set function f is a (normalized, but not
necessarily monotone) set function h such that for every set S ⊆ [m] it holds that



f(S) =
∑
T⊆S h(T ). One can easily verify that every set function f has a unique hyper-

graph representation h.
A set function is complement-free, or subadditive, if for all S, T ⊆ [m] it holds that

f(S ∪ T ) ≤ f(S) + f(T ). When studying a class of valuations V, it is standard to also
study the class max(V), as defined below.

Definition 2.7. Given a class of valuations V, the class max(V) is the class of all
valuations that can be represented as a maximum over a collection of valuations from
V, i.e., max(V) = {f : ∃G ⊆ V : ∀S ⊆ [m], f(S) = maxg∈G g(S)}.

In this paper we focus on valuation functions that exhibit complements. The follow-
ing hierarchies of valuations with complements have been considered in the literature.

Maximum over positive hypergraphs. [Feige et al. 2015] The class PH (positive-
hypergraph) is the class of all functions f whose hypergraph representation h has
nonnegative edges. The class PH-k contains all functions f ∈ PH for which every set
T with h(T ) > 0 satisfies |T | ≤ k. The class maximum over PH-k (MPH-k) is the class
max(PH-k). Unlike PH-k, MPH-k is a complete hierarchy: for every set function f , there
exists some k ≤ m such that f is in MPH-k (in particular, all functions are in MPH-m).

The supermodular degree. [Feige and Izsak 2013] The supermodular degree mea-
sures the extent to which any set function f exhibits supermodular behavior. For an
item j and set S, denote by f(j|S) = f(S ∪ j) − f(S)5 the marginal value of item j

given S. The supermodular dependency set of item j is defined as Dep+(j) = {j′ :
∃S ⊆ [m] so that f(j|S ∪ j′) > f(j|S)}. The supermodular degree of f is defined as
maxj∈[m]

∣∣Dep+(j)
∣∣. The class supermodular degree d (SM-d) contains all the set func-

tions with supermodular degree at most d. Clearly, the SM-d hierarchy is complete, as
any set function has supermodular degree at most m− 1.

2.2. A new hierarchy of restricted complements
The lowest level in the MPH-k hierarchy (MPH-1) is contained in the class of subad-
ditive valuations. It follows from Devanur et al. [2015] that for MPH-1 valuations the
price of anarchy is upper bounded by e

e−1Hm (where Hm is the m’th harmonic number).
The following example shows that for MPH-2 (and even PH-2), the price of stability can
already be as bad as Ω(m) [Morgenstern 2015].

A t-star-graph, centered at j, is a graph with t nodes, where there is an edge between
the center node (j) and each one of the other t − 1 nodes. A t-star-shaped valuation is
a valuation with a t-star-graph hypergraph representation, in which all edges have
weight 1.

A t-star-graph, centered at j, is a star structure graph with t nodes, whose center is
node j. A t-star-shaped valuation is a valuation with a t-star-graph hypergraph repre-
sentation, in which all edges have weight 1.

Consider two agents, a and b, and the items [m]. Let va be an m-star-shaped val-
uation, centered at item 1. Therefore, for all T ⊆ [m], va(T ) = |T | − 1 if 1 ∈ T and
0 otherwise. By construction, va ∈ PH-2. Agent b only wants item 1 for a value of
(m − 1)/m + ε. For agent a to purchase item 1 in equilibrium, it must pay at least
(m− 1)/m + ε, otherwise, agent b can bid slightly higher than a’s bid and improve its
utility. However, if agent a acquires a set T 3 1 for a price p per item, its utility is
|T | · (1− p)− 1. Therefore, if agent a bids more than (m− 1)/m, buying any set of items
yields negative utility. As a result, at any equilibrium, agent b gets item 1, agent a has
0 value, and the social welfare is (m−1)/m+ε. In the optimal outcome, agent a gets all

5We abuse notation and write S ∪ j instead of S ∪ {j}



the items and the social welfare is m− 1. Therefore, the fraction of the optimal welfare
that is achieved in any pure equilibrium is (m−1)/m+ε

m−1 = 1/m+ ε
m−1 .

OBSERVATION 2.8. The single bid auction has price of stability of at least m when
agents have valuations in PH-2.

On the other hand, it is easy to show6 that the single bid auction is ((1− e−m)/m, 1)-
smooth for general valuations, i.e, for general valuations the price of anarchy is at most
m/(1 − e−m), almost matching the lower bound. This example demonstrates that the
second level of the MPH hierarchy contains valuations that render the worst setting
possible for the single bid mechanism. Hence, the MPH hierarchy is not a useful hierar-
chy of restricted complements w.r.t. the price of anarchy of the single bid auction. One
would hope that the SM-d hierarchy would enable positive price of anarchy results.
While this remains an open question, we establish positive results for a newly intro-
duced hierarchy which combines the structural properties of both SM-d and MPH-k
valuations.

Maximum over Positive-Supermodular-d. We consider functions that can be repre-
sented as a maximum over valuations in SM-d that have only non-negative hyper-
edges.

Definition 2.9. (Maximum over Positive-Supermodular-d) The class MPS-d is de-
fined as MPS-d= max(PS-d) where PS-d = SM-d ∩ PH7.

The MPS-d hierarchy is complete8, i.e., for every monotone valuation f there exists
some d ≤ (m− 1) such that f ∈ MPS-d. The following is a key property of PS-d valua-
tions, which we prove in Appendix C.

LEMMA 2.10. Let v be a valuation in PS-d with a hypergraph representation w. For
any two items j, j′ ∈ [m], it holds that j′ ∈ Dep+(j) if and only if there exists a hyperedge
e for which we > 0 and {j, j′} ⊆ e.

3. THE SINGLE BID AUCTION IN THE PRESENCE OF COMPLEMENTARITIES
The main result of this section is the following:

THEOREM 3.1. For agents with valuations in MPS-d, the coarse correlated price of
anarchy of the single-bid auction is no more than 1

1−e−(d+1) (d+ 1)(d+ 2) ·H m
d+1

.

Specifically we show that when agents have MPS-d valuations, the single bid auction
is a ( 1−e−(d+1)

(d+1)·(d+2)·H m
d+1

, 1)-smooth mechanism. In addition, we prove a stronger upper

bound of 2(d+1)
1−e−2 ·Hm/2 when agents have max(PH-2∩SM-d) valuations, which is a strict

subclass of MPS-d. We also show a PoS lower bound of Ω(d+ logm
log logm ) when agents have

PH-2 ∩ SM-d valuations. We leave any of the gaps between these bounds as an open
problem.

The following proof method for establishing the smoothness of a mechanism with
respect to a class of valuations V was presented in Devanur et al. [2015]: first show
smoothness for a restricted class of valuations V ′. Then, show that the class V can
be pointwise β-approximated by the restricted class V ′. Pointwise approximation is
defined as follows:

6As a corollary from Lemma 4.10
7 SM-d ∩ PH formally says “all valuations in SM-d with a positive hypergraph representation”.
8 Since PS-(m-1) = SM-(m-1) ∩ PH = PH, we get that MPS-(m-1) = MPH-m.



Definition 3.2. [Devanur et al. 2015] [pointwise β-approximation] A valuation
class V is pointwise β-approximated by a valuation class V ′ if for any valuation v ∈ V
and for any set S ⊆ [m], there exists a valuation v′ ∈ V ′ such that β · v′(S) ≥ v(S) and
for all T ⊆ [m] it holds that v′(T ) ≤ v(T ).

Note that pointwise β-approximation is less restrictive than mapping each valuation
v ∈ V to a single valuation v′ ∈ V ′ that approximates it everywhere, yet smoothness of
a mechanism for valuations in V ′ implies smoothness for the larger class V.

LEMMA 3.3. [Devanur et al. 2015] If a mechanism for a combinatorial auction set-
ting is (λ, µ)-smooth for the class of valuations V ′ and V is pointwise β-approximated
by V ′, then it is

(
λ
β , µ

)
-smooth for the class V.

A constraint-homogeneous (CH) valuation is an additive valuation such that the
value of every item is either 0 or v̂ for some fixed v̂ > 0. In Devanur et al. [2015] it
was proved that complement-free valuations are pointwise Hm-approximated by CH
valuations.

When trying to apply a similar technique for the case of PS-d valuations, we face a
challenge, namely that for d ≥ 1 PS-d valuations cannot be pointwise β-approximated
by complement-free valuations for any β. To see this, consider an instance with two
items {a, b} and the PS-1 valuation v({a}) = v({b}) = 0 and v({a, b}) = 1. Any
complement-free valuation v′ ≤ v will have v′({a}) = v′({b}) = 0 which implies
v′({a, b}) = 0. Therefore, in order to use the technique of pointwise approximation
for PS-d valuations one must go beyond complement-free valuations. To this end we
introduce the following class of valuations.

Definition 3.4. (d-Constraint Homogeneous Valuations) A valuation v is d-
constraint homogeneous (d-CH) if there exists a value v̂, and disjoint sets of items
Q1, . . . , Q`, each of size at most d, so that v(Qi) = v̂ · |Qi| for every Qi, and the value of
every set S ⊆ [m] is the sum of values of contained Qi’s, i.e.,

v(S) =
∑
Qi⊆S

v(Qi) = v̂
∑
Qi⊆S

|Qi| = v̂ · |{t : ∃i s.t. t ∈ Qi ⊆ S}|

Note that 1-CH valuations are CH valuations and that d-CH valuations contain sin-
gle minded bidders where the interest set of each agent is of size at most d. The re-
mainder of this section is structured as follows. In Lemma 3.6 we show that when
agents have d-CH valuations the single bid auction is a ( 1−e−d

d , 1)-smooth mechanism.
In Lemma 3.7 we show that the class of PS-d valuations is pointwise (d + 2) · H m

d+1
-

approximated by (d+1)-CH valuations. These two lemmas imply the smoothness result
for PS-d. Finally, Observation 3.59 implies that the same smoothness result carries
over to MPS-d.

OBSERVATION 3.5. For every valuation class V, the valuation class max(V) is point-
wise 1-approximated by V.

We begin by proving smoothness for agents with d-CH valuations.

LEMMA 3.6. The single bid auction is a ((1 − e−d)/d, 1)-smooth mechanism when
agents have d-CH valuations.

9Observation 3.5 appeared previously (e.g.Lucier and Syrgkanis [2015]; Syrgkanis and Tardos [2013])
and its proof is by definition: for a valuation v ∈ max(V) and a set S ⊆ [m], let v∗ = v` so that
` ∈ argmax`∈L v`(S), then by definition v(S) = v∗(S) and v(T ) ≥ v∗(T ) For any set T ⊆ [m].



PROOF. Fix a valuation profile v of d-CH valuations, and let S∗ = OPT(v) be an
optimal allocation w.r.t. v. Fix an agent i, let v̂ and {Q`}` be the parameters in agent
i’s valuation, and for presentation clarity write v = vi; v(S) = v̂ ·

∑
Q`⊆S |Q`|. Consider

a bid profile b and denote by pj(b) the induced price for item j, i.e., pj(b) = bi∗ so that
i∗ is the agent that purchases j under bid profile b. Consider an arbitrary set Q` ⊆ S∗i .
Agent i can acquire all items in Q` by bidding t > maxj∈Q` pj(b). In such a case the
utility from purchasing Q` is v(Q`)− t · |Q`| = v̂ · |Q`| − t · |Q`| = |Q`| · (v̂ − t) Therefore:

ui(t,b−i) ≥
∑

Q`⊆S∗i

|Q`| · (v̂ − t) · 1{t > max
j∈Q`

pj(b)}

Suppose i performs the randomized deviation a∗i (vi) with the density function f(t) =
1
d ·

1
v̂−t and support [0, (1− e−d) · v̂], Then:

E
t∼a∗i (vi)

[ui(t,b−i)] ≥
∑

Q`⊆S∗i

|Q`| ·
∫ (1−e−d)v̂

maxj∈Q`{pj(b)}
(v̂ − t) · f(t)dt

= 1
d ·

∑
Q`⊆S∗i

|Q`| ·
(

(1− e−d)v̂ −max
j∈Q`
{pj(b)}

)
By maxj∈Q`{pj(b)} ≤

∑
j∈Q` pj(b) and v(Q`) = v̂ · |Q`| and |Q`| ≤ d we get that:

E
t∼a∗i (vi)

[ui(t,b−i)] ≥ 1−e−d
d ·

∑
Q`⊆S∗i

v(Q`)−
∑

Q`⊆S∗i

∑
j∈Q`

pj(b)

Finally, the first sum is exactly agent i’s valuations for S∗i , and the second sum is at
most

∑
j∈S∗i

pj(b) since {Q`}` is a partition, therefore:

E
t∼a∗i (vi)

[ui(t,b−i)] ≥ 1−e−d
d · v(S∗i )−

∑
j∈S∗i

pj(b)

Summing over all agents establishes the smoothness property.

Note that the class of single-minded bidders with interest sets of size at most d is a
special case of d-CH valuations, so Lemma 3.6 implies a corresponding bound on the
PoA of SBA with regard to this valuation class as well.

Next we show that the class PS-d can be pointwise (d + 2) ·H m
d+1

-approximated by

(d+1)-CH valuations10. In the proof, we use the following two properties of PS-d valua-
tions: First, two items are in the super-dependency set of each other if and only if they
share a hyperedge with a positive weight. Second, the size of the super-dependency set
of an item is bounded by the level of the hierarchy. We note that neither the class SM-d
nor the class PH-k (for k ≥ 2) exhibit both properties.

LEMMA 3.7. The PS-d valuation class is pointwise (d+ 2) ·H m
d+1

-approximated by

the (d+ 1)-CH valuation class.

PROOF. Consider a valuation v ∈ PS-d, a set X ⊆ [m] and some β to be determined
later. Let w be the hypergraph representation of v, i.e., v(S) =

∑
T⊆S wT . Consider

the following greedy construction of a partition Q = {Q`}` of the set X: While there
are more than d + 1 items, select a subset of yet unselected d + 1 items from X, with

10Our proof method is in the spirit of the proof that subadditive valuations are pointwise Hm-approximated
by CH valuations, as appears in Devanur et al. [2015]



ALGORITHM 1: Algorithm 1: Partitioning of set X.
Input: A set X ⊆ [m], access to a valuation function v.
Output: A partition Q = {Q`}` of X

1 S ← X.
2 for each ` from 1 to d m

d+1
e do

3 Select a set Q` in argmax A⊆S
|A|=d+1

{v(A)}, or Q` := S if |S| < d+ 1.

4 S ← S \Q`. If S = ∅ then terminate.
5 end

maximum value (with respect to v). The remaining items form the last subset of the
partition. The formal description of the greedy process is given in Algorithm 1.

Let hQ be the function:

hQ(T ) = v(X)

|⋃lQ`|β ·
∑
Q`⊆T

|Q`|

Note that for any family of disjoint subsets Q′ each of size at most d + 1, hQ′ is a
(d + 1)-CH valuation. It suffices to find some Q′ ⊆ Q so that β · hQ′(X) ≥ v(X) and
also hQ′(T ) ≤ v(T ) for all T ⊆ [m]. We will examine a sequence of such functions hQ′ ,
so that if none of them pointwise β-approximates v at X, then this implies an upper
bound on β.

Initially consider S1 = X. Since Q is a partition of S1 we have that hQ(X) =
v(X)
|X|β ·

∑
` |Q`| = v(X)

β , so the first requirement of pointwise β-approximation holds.
If hQ(T ) ≤ v(T ) for all T ⊆ [m] then hQ pointwise approximates v at |X|. Other-
wise, there exists some T1 so that hQ(T1) > v(T1). Since v is monotone v (∪Q`⊆T1

Q`) ≤
v(T1) < hQ(T1) = hQ (∪Q`⊆T1

Q`) therefore we may assume w.l.o.g. that T1 is a union of
sets from Q. Iteratively, consider Si = Si−1 \Ti−1. Since Ti−1 and Si−1 are each a union
of sets from Q, then Si is also a union of sets from Q, and QSi = {Q` ∈ Q : Q` ⊆ Si}
is a partition of Si. By definition, hQSi (T ) = v(X)

|Si|β
∑
Q`∈QSi :Q`⊆T

|Q`| is a (d + 1)-CH

valuation, and since QSi is a partition of Si we get that hQSi (X) = v(X)
β . If for some

i it holds that hQSi (T ) ≤ v(T ) for all T ⊆ [m], then hQSi pointwise β-approximates v
at X. Otherwise, at some point the iterative process terminates and we are left with
two partitions of the set X: {Q`}` and {Ti}i, so that every Q` is a subset of some Tj .
Therefore: ∑

`

v(Q`) ≤
∑
i

v(Ti) <
∑
i

hQSi (Ti) = v(X)
β

∑
i

|Ti|
|Si| (2)

where the first inequality is because v has a positive-hypergraph representation, the
second inequality is by construction, and the last equality is because every Si and Ti
are unions of subsets from Q. Denote by C(Q) the collection of all hyperedges e ⊆ X
with we > 0 so that e 6⊆ Q` for all `. By construction it holds that v(X) =

∑
` v(Q`) +∑

e∈C(Q) we. The first sum in the last expression is the total weight of all (hyper)edges
that are in the interior of some partition element Q`. The second is the total weight
of all edges that connect at least two partition elements. We establish the following
lemma:

LEMMA 3.8.
∑
e∈C(Q) we ≤ (d+ 1)

∑
` v(Q`)

Before proving Lemma 3.8 we show how it is used to conclude the proof. Note that
the proof of Lemma 3.8 relies on the properties of the class PS-d. Lemma 3.8 implies



v(X) ≤ (d + 2)
∑
` v(Q`). By equation (2) we get: v(X) < (d + 2) v(X)

β

∑ |Ti|
|Si| therefore

β < (d + 2)
∑ |Ti|
|Si| . For ease of exposition assume |X| is divisible by (d + 1)11, which

implies that the cardinality of every Q`, and hence every Si and every Ti are divisible
by d+ 1. Let si = |Si|

d+1 and ti = |Ti|
d+1 . Therefore:

∑
i

|Ti|
|Si|

=
∑
i

ti
si

=
∑
i

ti−1∑
j=0

1
si
≤
∑
i

ti−1∑
j=0

1
si−j =

s1−1∑
j=0

1
s1−j = Hs1 = H |X|

d+1

(3)

Which concludes that β < (d+ 2) ·H m
d+1

. We are left to prove Lemma 3.8.

PROOF OF LEMMA 3.8. For each Q`, we show there exists a set E` ⊆ C(Q), such
that the collection {E`}` satisfies C(Q) ⊆ ∪`E`, and for every ` it holds that:∑

e∈E`

we ≤ (d+ 1)v(Q`) (4)

We conclude that
∑
e∈C(Q) we ≤

∑
`

∑
e∈E` we ≤ (d + 1)

∑
` v(Q`), where the first in-

equality is true since C(Q) ⊆ ∪`E`. Let E` denote the set of hyperedges e ∈ C(Q)
such that ` is the minimal index of a set from the partition Q for which e ∩ Q` 6= ∅.
For every item j ∈ Q` define Ej` = {e ∈ E` : j ∈ e}, i.e., the hyperedges in
E` in which j is a member, clearly E` =

⋃
j∈Q` E

j
` . For a set of hyperedges E, let

V (E) =
⋃
e∈E e. By Lemma 2.10 we get that V (Ej` ) ⊆

(
Dep+(j) ∪ {j}

)12, which im-
plies that

∣∣∣V (Ej` )
∣∣∣ ≤ |Dep+(j)| + 1 ≤ (d + 1), where the last inequality follows from

PS-d ⊆ SM-d. By definition of E`, for every j′ ∈ V (E`), if j′ ∈ Q`′ , then `′ ≥ `, which
implies that prior to the `th iteration of step 3 in Algorithm 1, all the items in V (E`)

are available, i.e., in the set S. Therefore, for every item j ∈ Q` the set V (Ej` ) was
available. By step 3 and monotonicity of v, Q` maximizes value over all available sets
of size at most d+ 1 therefore v(Q`) ≥ v(V (Ej` )) for every j. Therefore:∑

e∈E`

we ≤
∑
j∈Q`

∑
e∈Ej`

we ≤
∑
j∈Q`

v
(
V (Ej` )

)
≤ |Q`| v(Q`) ≤ (d+ 1)v(Q`)

We also show that PH-2 ∩ SM-d valuations are pointwise (d+ 1)Hm/2-approximated
by 2-CH valuations13, implying that the PoA is at most 2(d+1)Hm/2

1−e−2 when agents have
valuations in max(PH-2 ∩ SM-d):

THEOREM 3.9. The single bid auction is a ( 1−e−2

2(d+1)Hm/2
, 1)-smooth mechanism when

agents have max(PH-2 ∩ SM-d) valuations.

Note that Theorem 3.9 shows an improved PoA upper bound of O(d log(m)) when
agents have max(PH-2 ∩ SM-d) valuations, improving the O(d2 log(m/d)) upper bound
for MPS-d valuations.

11for the general case the reader is referred to Appendix C.2.
12If j′ ∈ V (Ej

` ) then there exists an edge e 3 j, j′ so that we > 0. By Lemma 2.10 either j′ = j or
j′ ∈ Dep+(j).
13the proof appears in Appendix B.



Proposition 3.10 shows a lower of d, which holds even for the more restricted class
PH-2 ∩ SM-d, and even with respect to the best equilibrium.

PROPOSITION 3.10. There exists an instance with one bidder with a SM-d ∩ PH-2
valuation and one bidder that is interested in a single item, for which the price of sta-
bility of the single-bid auction is d− ε for every ε > 0.

PROOF. Consider an instance as described in the beginning of subsection 2.2, but
with d + 1 items. By adding m − d − 1 items that have no value to any of the agents,
the result follows directly.

In [Devanur et al. 2015], a lower bound of Ω( logm
log logm ) has bene shown for the price

of stability (PoS) of the single-bid auction with additive valuations. This bound carries
over to valuations in PH-2∩SM-d for every d (since additive valuations are a strict sub-
class of PH-2 ∩ SM-d). We conclude that the PoS for PH-2 ∩ SM-d valuations is at least
max (d,Ω( logm

log logm )). In Appendix C.3 we show another example that simultaneously
captures the two lower bounds above, i.e., an instance where agents have PH-2∩SM-d
valuations, for which the PoS of the single bid auction is Ω(d+ logm

log logm ).

THEOREM 3.11. If all agents have valuations in PH-2∩SM-d, the PoS of the single
bid auction w.r.t. pure Nash equilibria is at least Ω(d+ logm

log logm ).

4. THE HYBRID SINGLE BID MECHANISM
In this section we prove that randomizing between the single-bid auction and the
grand bundle auction provides a O (

√
m) approximation to welfare (Theorem 4.9). First

we present our technique for proving price of anarchy upper bounds for mechanisms
that randomize between smooth mechanisms. Then we apply our technique and show
that randomizing between the single bid and the grand bundle auctions yields a mech-
anism with a price of anarchy of at most O(

√
m) for general valuations.

Piecewise Smoothness of Mechanisms. Piecewise Smoothness relaxes smoothness,
by requiring a (possibly different) (λ, µ) pair for every valuation profile, as long as the
ratio max{µ,1}

λ is upper bounded.

Definition 4.1. (Piecewise Smoothness) A mechanismM is ρ-piecewise smooth for
a set of valuation profiles V if for any valuation profile v ∈ V, there exists a pair
λ(v), µ(v) > 0,14 so that ρ ≥ max{µ,1}

λ , and a (possibly randomized) action profile a∗i (v),
so that for any action profile a:∑

i

E
a′i∼a∗i (v)

[ui(a
′
i,a−i; vi)] ≥ λ(v) · SW(OPT (v))− µ(v) ·

∑
i

Pi(a)

The following observation follows directly from the definition.

OBSERVATION 4.2. If a mechanism is (λ, µ)-smooth then it is max{µ,1}
λ -piecewise

smooth.

The following theorem shows that ρ-piecewise smooth mechanisms have a price of
anarchy of at most ρw.r.t. coarse correlated equilibria. The proof is essentially the same
as the proof in Syrgkanis and Tardos [2013] for proving upper bounds for a smooth
mechanism (see Appendix C).

14We will simply write λ, µ when clear in the context



THEOREM 4.3. If a mechanism is ρ-piecewise smooth for a set of valuation profiles
V and agents have the possibility to withdraw then its price of anarchy w.r.t. coarse-
correlated equilibria is at most ρ.

Clearly, if a mechanism is ρ-piecewise smooth, then it is also ρ′ piecewise smooth for
every ρ′ ≥ ρ, Therefore:

LEMMA 4.4. If a mechanism is ρ-piecewise smooth for a class of valuation profiles
V, and ρ′-piecewise smooth for a class of valuation profiles V ′, then it is max{ρ, ρ′}-
piecewise smooth for the class of valuation profiles V ∪ V ′.

Lemma 4.4 implies that in order to prove piecewise smoothness for a space of valuation
profiles, one can separate the space into subspaces and prove piecewise smoothness for
each subspace.

Definition 4.5. (Hybrid mechanism) Given two mechanismsM andM′, and a real
number 0 < p < 1, the hybrid mechanism Mp solicits from each agent i two actions,
ai, a

′
i, and runsM(a) with probability p andM′(a′) with probability 1− p.

Corollary 4.7, which follows from the next lemma, shows that if the space of valuation
profiles can be separated into subspaces, such that each subspace admits a smooth
mechanism, then the hybrid mechanism composed out of those mechanisms has piece-
wise smoothness guarantees for the whole space of valuation profiles.

LEMMA 4.6. Let V and V ′ be spaces of valuation profiles. Suppose mechanismM is
(λ, µ)-smooth w.r.t. valuation profiles in V, and mechanism M′ is (λ′, µ′)-smooth w.r.t.
valuation profiles in V ′. Then, for every p, the hybrid mechanismMp is (p·λ,max{µ, 1})-
smooth w.r.t. valuation profiles in V and ((1− p) ·λ′,max{µ′, 1})-smooth w.r.t. valuation
profiles in V ′.

PROOF. Consider a valuation profile v ∈ V. Consider an arbitrary action profile
(a,a′), where a = (a1, . . . , an) and a′ = (a′1, . . . , a

′
n). Let Pi and P ′i denote the payments

of mechanismsM andM′ respectively, and similarly for utilities and values. Utilities
(upi ), values (vpi ), and payments (P pi ), denote the expected value of those quantities for
agent i in the hybrid mechanism Mp (e.g. for payments, P pi (a,a′) = p · Pi(a) + (1 −
p) · P ′i (a′)). Let a∗i (v) be the deviation given by the smoothness of mechanism M. By
considering the utility of each agent i at the action profile ((a∗i ,a−i),a

′) and then using
the linearity of expectation:∑

i

E
a∗i∼a∗i (v)

[upi ((a
∗
i ,a−i),a

′)] =
∑
i

E
a∗i∼a∗i (v)

[p · ui(a∗i ,a−i) + (1− p) · u′i(a′)]

= p ·
∑
i

E
a∗i∼a∗i (v)

[ui(a
∗
i ,a−i)] + (1− p) ·

∑
i

u′i(a
′)

By smoothness ofM it holds that:

∑
i

E
a∗i∼a∗i (v)

[upi ((a
∗
i ,a−i),a

′)] ≥ p ·

(
λ · SW(OPT (v))− µ ·

∑
i

Pi(a)

)
+ (1− p) ·

∑
i

u′i(a
′)

= p · λ · SW(OPT (v))− µ · p ·
∑
i

Pi(a) + (1− p) ·
∑
i

(v′i(a
′)− P ′i (a′))



By v′i(a′) ≥ 0 we get:∑
i

E
a∗i∼a∗i (v)

[upi ((a
∗
i ,a−i),a

′)] ≥ p · λ · SW(OPT (v))−max{µ, 1}
∑
i

(p · Pi(a) + (1− p) · P ′i (a′))

= p · λ · SW(OPT (v))−max{µ, 1}
∑
i

P pi (a,a′)

Where the last equality follows by the definition of the hybrid mechanism. Symmetri-
cally, for every valuation profile v′ ∈ V ′ the mechanism is ((1−p)·λ′,max{µ′, 1})-smooth
with respect to valuations in V ′.

Applying Lemma 4.6, Observation 4.2, and Lemma 4.4 for the mechanism Mp im-
plies the following corollary:

COROLLARY 4.7. Given a (λ, µ)-smooth mechanismMw.r.t. valuation profiles in V,
and a (λ′, µ′)-smooth mechanismM′ w.r.t. valuation profiles in V ′, and a real number
0 < p < 1, the hybrid mechanismMp is ρ-piecewise smooth for:

ρ = max{max{µ, 1}
p · λ

,
max{µ′, 1}
(1− p) · λ′

}

with respect to valuation profiles in V ∪ V ′.

The following lemma shows that if a hybrid mechanism is composed of two ALI
mechanisms, then the hybrid mechanism also converges to a coarse correlated equilib-
rium in polynomial time.

LEMMA 4.8. Consider the hybrid mechanism Mp which is composed of two ALI
mechanisms A and B, which runs A with probability p ≤ 1

2 and B with probability
1 − p. For an arbitrary mechanism M, let TM be number of rounds required for no-
regret learning run forM to converge to an ε-approximate correlated equilibrium. Let
T = max(TA, TB). Then, if each agent runs a standard no-regret learning on the joint
bid-space forM for at least m ≥ max( 2T

p ,
8
p ln 2

δ ) rounds, the distribution over their joint
bid space will be an ε-approximate coarse correlated equilibrium, with probability at
least 1− δ.

4.1. A Simple Mechanism for General Valuations
In this subsection we show an application of the above technique. Most of the proofs
are deferred to Appendix C.

The Grand bundle auction. The grand-bundle auction solicits a single bid bi ∈ R+

from each agent i, approaches the agents in decreasing order of their bids, and offers
each agent i the grand bundle [m] for the price bi, once an agent acquires [m] the
auction ends. Since the grand bundle auction solicits a single real-valued bid from
each bidder, then runs a truthful mechanism, it is also an ALI mechanism.

THEOREM 4.9. The hybrid mechanism composed of the single-bid and the grand-
bundle auctions with p = 1/2 is 4

1−e−1

√
m-piecewise smooth when agents have general

valuations.

Note that in this general setting, each of the grand-bundle and single-bid auctions
has a price of anarchy of Ω(m). We begin by considering valuation profiles in which
the optimal social welfare can be well-approximated allocating only “small” bundles to
bidders.



LEMMA 4.10. If for every valuation profile v in a class of valuation profiles V there
exists an allocation S∗ so that SW(S∗) ≥ β · SW(OPT (v)) and |S∗i | ≤ γ for every agent
i, then for every c > 0 the single bid auction is (c · (1− e−1/c)β, c · γ)-smooth w.r.t. V.

We proceed by considering valuation profiles in which the optimal social welfare can
be approximated by allocating the grand bundle to some agent.

LEMMA 4.11. If for a class of valuation profiles V, for every v ∈ V there exists
an agent i∗ so that vi∗([m]) ≥ β · SW(OPT (v)), then the grand-bundle auction is a
(β · (1− e−1), 1)-smooth mechanism.

Lemma 4.10 says that when there exists a β-approximation to welfare where buyers
take bundles of size at most γ, the single-bid auction is smooth (in these parameters),
while Lemma 4.11 shows that the grand bundle auction is smooth (in β) when a single
buyer receiving the grand bundle β-approximates welfare. This suggests the following
definition, which classifies valuation profiles as those which are “more balanced” or
“more lopsided” in terms of their optimal allocations.

Definition 4.12. (lopsided) A valuation profile v is z-lopsided if there exists an op-
timal allocation S∗ so that at least half of the social welfare is due to agents that
were allocated a bundle with at least z goods, i.e., if

∑
i∈A vi(S

∗
i ) ≥ 1

2SW(S∗), where
A ⊆ N and for every i ∈ A it holds that |S∗i | ≥ z. We denote by LOP (z) the class of all
z-lopsided valuation profiles.

The following lemma is a direct corollary of Lemma 4.11 to LOP (z).

LEMMA 4.13. The grand-bundle auction is a ( z
2m · (1− e

−1), 1)-smooth mechanism
with respect to valuation profiles in LOP (z).

Similarly, the following theorem applies Lemma 4.10 to those valuations not in Lop(z).

LEMMA 4.14. For every c > 0, the single-bid auction is a ( c2 · (1−e
−1/c), c ·z)-smooth

mechanism with respect to valuation profiles v 6∈ LOP (z).

To conclude the proof of Theorem 4.9, Note that Lemma 4.13 implies that the grand-
bundle auction is ( 1

2
√
m

(1 − e−1), 1)-smooth w.r.t. valuation profiles in LOP (
√
m) , and

Lemma 4.14 with c = 1 implies that the single-bid auction is ((1− e−1)/2,
√
m)-smooth

w.r.t. valuations not in LOP (
√
m). Since every valuation profile is either in LOP (

√
m),

or not in LOP (
√
m), by corollary 4.7 we conclude.

We note that this guarantee is tight up to a constant. In Proposition C.1 we show a
lower bound of exactly

√
m for the PoA of the hybrid mechanism in every PNE.

The hybrid framework suggests a new, arguably more robust, way to design simple
mechanisms with high efficiency at equilibrium. The hybrid mechanism that mixes
between the single-bid auction and the grand bundle auction has price of anarchy
of O(min(

√
m, d2 log(m/d))). Note that for small values of d, the hybrid mechanism

performs similarly to the single bid auction, while for large values of d, it outperforms
the single bid auction (achieving O(

√
m) PoA, compared to Ω(m)). In this sense, the

hybrid mechanism is robust.

5. DISCUSSION
In this paper we study simple mechanisms for settings that exhibit complementarities.
Our results leave a gap between the lower and upper bounds on the PoA of the single
bid auction when applied to MPS-d valuations. Our analysis in Appendix A suggests
that new techniques are needed in order to close this gap. In particular, we show that



the pointwise approximation of MPS-d by (d+ 1)-CH valuations is tight (up to a logm
factor).

we also introduce the notion of piecewise smoothness and study its implications to
the design of hybrid mechanisms. It would be interesting to find additional applica-
tions of piecewise smoothness for proving polynomially-learnable equilibria for simple,
approximately optimal auctions.
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A. LIMITATIONS ON THE POINTWISE APPROXIMATION METHOD FOR PS-D
In this section we discuss the limitations of the pointwise approximation method for
valuations in PS-d. It remains an interesting open question - what is the real approx-
imation ratio between (d + 1)-CH and PS-d, and how does it depend on the number
of items m? We show progress in answering this question by proving various lower
bounds for the approximation ratio of PS-d by the classes k-CH for all k ≤ d + 1. The
following proposition shows that using k-CH valuations where k < d+1 cannot improve
our results.

PROPOSITION A.1. For all d, and all k < d + 1, there exists a valuation v ∈ PS-d
such that if v′ ∈ k-CH pointwise β-approximates v at [m], then β ≥

(
d
k−1
)
.

PROOF. We show that there exists a valuation v ∈ PS-d such that for all v′ ∈ k-CH,
it holds that v([m])

v′([m]) ≥
(
d
k−1
)
. Set m = d+1 and consider the valuation v ∈ PS-d with the

hypergraph representation that contains all of the possible hyper-edges of size k, and
gives each hyper-edge a weight of 1. There are

(
d+1
k

)
such hyper-edges and therefore

v([m]) ≤
(
d+1
k

)
. Assume v′ ∈ k-CH and that v′ β-approximates v at [m]. Because v′ ∈

k-CH, all edges that are assigned positive weight by v′ must be disjoint. Therefore v′
cannot assign positive weight to more than d+1

k hyper edges of size k. Furthermore,
by the definition of β-approximation, for every T ⊆ [m] it holds that v′(T ) ≤ v(T ).
Specifically for all hyper edges e with |e| < k, v′(e) ≤ v(e) = 0, and for all hyper edges e
with |e| = k, v′(e) ≤ v(e) = 1. Therefore, v′([m]) ≤ d+1

k . In total we get:

β ≥ v([m])

v′([m])
≥ k

d+ 1

(
d+ 1

k

)
=

(
d

k − 1

)
(5)

Next, we show two lower bounds on the approximation ratio of PS-d by the class
(d+ 1)-CH. The following is from [Dahan 2014].

THEOREM A.2. For d = 2, 3, 5, 7 and d ≥ 10, there exist d-regular graphs, for which
the shortest cycle is of length larger than logd(m/4).

PROPOSITION A.3. For d = 2, 3, 5, 7 and d ≥ 10, there exists a large enough m and
a valuation v ∈ PS-d, such that if v′ ∈ (d+ 1)-CH and v′ pointwise β-approximates v at
[m] then β ≥ d.

PROOF. Consider the valuation v with the hypergraph representation given by hav-
ing a weight 1 on each edge from the graph given by theorem A.2. Since the graph is d
regular, there are d ·m edges, therefore v([m]) = d ·m. For large enough m, the shortest
cycle in the graph is larger than d+ 1, therefore in any set of at most k ≤ d+ 1 nodes,
there will be at most k−1 edges connecting two nodes from the set. Let v′ be a (d+1)-CH
valuation that β-approximates v. By definition of pointwise β-approximation, for every
item j it holds that v′({j}) ≤ v({j}) = 0 for every edge e it holds that v′(e) ≤ v(e) = 1.
Let Q1, . . . Q` be the sets that form the valuation v′. For any of the sets Qi, it must hold
that v′(Qi) ≤ |Qi| therefore v′([m]) ≤ m. As a result v([m])

v′([m]) ≥ d which implies β ≥ d.

Note that the requirement logd(m/4) ≥ d+1 translates to m = Ω(dd). The next result
is a slightly less tight lower bound, but for a more general case.

PROPOSITION A.4. For large enough d, and m ≥ d2, there exists a valuation v ∈
PS-d, such that if v′ ∈ (d + 1)-CH and v′ pointwise β-approximates v at [m] then β =
Ω( d

log d ).



For the proof of proposition A.4, we will use random graphs to show there exists a
valuation f ∈ PS-d such that for every g ∈ (d+1)-CH, f([m])

g([m]) ≥ C ·
d

log d for some constant
C. Let G = (V,E) be a graph, and denote e(S) = |{e = ij ∈ E such that i, j ∈ S}| (the
number of edges in G with both endpoints in S). For the proof of proposition A.4 we
use the following lemma:

LEMMA A.5. For large enough d, there exists a graph G = (V,E) on m = d2 vertices
which satisfies:

(1) Every vertex set S ⊆ V with |S| = k ≤ d+ 1 satisfies e(S) ≤ 12k log d.
(2) The maximal vertex degree ∆(G) satisfies ∆(G) ≤ d
(3) |E| ≥ 1

9d
3

Using the graph G from lemma A.5 we prove proposition A.4:

PROOF OF PROPOSITION A.4 . Assume that d is large enough for G = (V,E) from
lemma A.5 to exist, and assume d ≤

√
m. Let f be a graphical valuation on [m],

constructed in the following way: divide [m] into T = m
d2 bundles of size d2 each =

B1, B2, ..., BT . For each Bt, fix some bijection πt : Bt → V and let the edges in Bt corre-
spond to edges in G as induced by πt. Let each edge in Bt have a weight of 1, and each
vertex - a weight of 0. Thus, for all t, f(Bt) = Ω(d3) and f([m]) = Ω(d3 md2 ) = Ω(m · d),
furthermore - f ∈ PS-d.

Now, consider any d + 1-CH valuation function g on [m]. Denote Qg = {Qgi }i∈I(g)
the supporting item sets for g. By definition |Qgi | ≤ d + 1 for all i ∈ I(g). Assume that
g satisfies g(S) ≤ f(S) for all S ⊆ [m]. To finish it is enough to prove that g([m]) =
O(m log d). g ≤ f , and by the construction of f we get that for any item set Qgi :

v̂g · |Qgi | = g(Qgi ) ≤ f(Qgi ) = 1 · e(Qgi )

=
∑
t

e(Bt ∩Qgi ) ≤
∑
t

12 |Bt ∩Qgi | · log d = 12 |Qgi | · log d

We get that v̂g ≤ 12 log d. So for g([m]) we get:

g([m]) = v̂g ·
∑
i∈I(g)

|Qgi | ≤ v̂g ·m ≤ 12 ·m log d

as required.

We now turn to prove lemma A.5.

PROOF OF LEMMA A.5. Consider a random graphG(m, p) withm = d2 vertices and
p = 1

2d the independent probability for the existence of each edge. We will show that
for large enough d, with positive probability G(m, p) satisfies all three requirement
simultaneously and therefore such a graph must exist. For this it is enough to show
that each of the requirements by itself is fulfilled with high probability (abbreviated
w.h.p.), i.e. the probability that the requirement is fulfilled tends to 1 as d increases.

(1) For S with |S| = k ≤ log d the claim is trivial, there are at most 1
2k

2 edges in S, and
if k ≤ log d then 1

2k
2 ≤ k log d. For k > log d, the number of edges in any set S of size

k ≤ d+ 1 is a binomial random variable XS = Bin(
(
k
2

)
, 1
2d ). Its expectation:

µ = E[XS ] =

(
k

2

)
1

2d
=
k(k − 1)

4d



Using the Chernoff bound we get (for ε > 1):

Pr{XS ≥ (1 + ε)µ} ≤ exp(− ε2

2 + ε
µ) ≤ exp(−1

2
ε
k2

4d
) = exp(−k

2

8d
ε)

There are
(
d2

k

)
vertex subsets of size k. A standard bound for

(
n
k

)
is:(

d2

k

)
≤
(
ed2

k

)k
Let ε = C d

k log(d
2

k ) for some C large enough to be determined later. Note that:

(1 + ε)µ = [1 + C
d

k
log(

d2

k
)]
k(k − 1)

4d
=

1

2
C(k − 1) log d− 1

4
C(k − 1) log k +

k(k − 1)

4d
≤ 1

2
Ck log d

Let YS be the indicator variable that is equal to 1 if XS ≥ 1
2Ck log d ≥ (1 + ε)µ and

0 otherwise. Denote

Yk =
∑

S⊆V,|S|=k

YS

Using the union bound we get:

E[Yk] = E[
∑

S⊆V,|S|=k

YS ] =
∑

S⊆V,|S|=k

E[YS ] =
∑

S⊆V,|S|=k

Pr{YS = 1}

≤ (
ed2

k
)k · e− k

2

8d ε ≤ exp(k(log(
d2

k
) + 1)− C

8
k log(

d2

k
))

≤ exp(−(
C

8
− 2)k log(

d2

k
)) ≤ exp(−k log(

d2

k
))

For all of the inequalities in the above calculation to hold it’s enough to take C > 24.
We see that the expected number of sets of size k with more than 12k log d edges is
vanishingly small. Thus, Markov’s inequality implies:

Pr{Yk ≥ 1} ≤ E[Yk] ≤ e−k log( d
2

k )

Again using the union bound we get:

Pr{∃1 ≤ k ≤ (d+ 1) : Yk ≥ 1} ≤
d+1∑
k=1

e−k log( d
2

k )

≤ (d+ 1)e−2 log d =
d+ 1

d2

so w.h.p every vertex subset S ⊆ V with |S| = k ≤ d+ 1 satisfies e(S) ≤ 12k log d.
(2) The degree deg(x) of each vertex x ∈ V is a binomial random variable B(m−1, p) =

B(d2 − 1, 1
2d ). Its expectation is E[deg(x)] = d2−1

2d = 1
2d−

1
2d . Using Chernoff again:

Pr{deg(x) > d} ≤ e− 1
6d

Using the union bound again:

Pr{∆(G) > d} ≤
∑
x∈V

Pr{deg(x) > d} ≤ d2e− 1
6d

so w.h.p. ∆(G) ≤ d.



(3) The total number of edges in G is a binomial random variable B(
(
d2

2

)
, 1
2d ) with

expectation E [|E|] = 1
4d

3 − 1
4d. With Chernoff we get:

Pr{|E| ≤ 1

8
d(d2 − 1)} ≤ e− 1

32d
3+ 1

32d

so w.h.p. |E| ≥ 1
8d

3 − 1
8d ≥

1
9d

3.

Next, we show that our analysis of the greedy algorithm in the proof of lemma 3.7 is
almost tight:

PROPOSITION A.6. If d <
√
m, there exists a valuation v ∈ PS-d, for which the

partition {Q`}` given by algorithm 1 satisfies:

v([m]) = d
∑
`

v(Q`)

This shows the analysis of algorithm 1 is almost tight because for the partition that
is returned by the algorithm we show that: v([m]) ≤ (d+ 2)

∑
` v(Q`).

PROOF. Let G = (V,E) be a graph with vertices that correspond to items in the
auction, i.e. V = [m], constructed in the following way: divide V to T = b m

d2+1c bundles
of size d2 + 1 each - B1, ...BT . Number all of the items in

⋃
tBt by ordered pairs -

(t, j) ∈ {1, ..., T} × {0, 1, ..., d2} such that Bt = {(k, j) : k = t}, i.e. the first coordinate
is the bundle number for the item and the second coordinate is the number inside the
bundle. The set of edges E is defined in the following way:

Ecentert =

{
{(t, d2), (t, kd)} : k = 0, ..., (d− 1)

}
Erimt =

{
{(t, kd), (t, kd+ j)} : k = 0, ..., (d− 1), j = 1, ..., (d− 1)

}
E =

⋃
t=1,...,T

Et =
⋃

t=1,...,T

(Ecentert ∪ Erimt )

Note that Et is the set of edges in G with both ends in Bt, and there are no edges e =
(x, y) ∈ E with x ∈ Bt1 and y ∈ Bt2 , i.e. there are no crossing edges between different
bundles. The valuation v is described, as usual, via its graphical representation - it
gives a weight of 0 to each individual item, a weight of 1

t to edges e ∈ Ecentert and a
weight of 1

t − ε (for an arbitrary small ε > 0) to edges in Erimt .
First note that v ∈ PS-d because all edges have non-negative weight and no item has

more than d neighbours.

LEMMA A.7. v satisfies the following properties:

(1) The output of algorithm 1 when run on v returns the partition:

{Qi}i = {Qt}t=1,...,T = {(t, kd) : k = 0, ..., d}t=1,...,T

(2) For every t=1,...,T:

{e ∈ E : e ⊆ Qt} = Ecentert



Using Lemma A.7, we calculate:

v([m]) =
∑

t=1,...,T

v(Bt) =
∑

t=1,...,T

d
1

t
+ d(d− 1)(

1

t
− ε)

=
∑

t=1,...T

[
d2

1

t
− d(d− 1)ε

]
= −Td(d− 1)ε+ d

∑
t=1,...,T

d
1

t

= −Td(d− 1)ε+ d
∑

t=1,...,T

v(Qt)

and by choosing ε to be small enough this can be arbitrarily close to d
∑
t=1,...,T v(Qt)

as required.

PROOF OF LEMMA A.7. We prove the properties of the lemma by running the algo-
rithm on the input v. In the first iteration of step 3, the algorithm chooses

Q1 ∈ arg max
A⊆[m]

|A|=d+1

{v(A)}

which is exactly the set {(1, kd) : k = 0, ..., d} that contains in it all the edges in Ecenter1 ,
and has a weight of d. Note that all edges in B1 have at least one endpoint in Q1, thus
adding the items in B1 \ Q1 to any future Qt will not add any value to it. In a similar
way one can see that in the t-th iteration of step 3 the set that will be chosen as Qt will
be {(t, kd) : k = 0, ..., d}, the edges strictly contained in it are exactly Ecentert and it has
a weight of exactly d

t .

B. A TIGHTER PRICE OF ANARCHY RESULT FOR THE SINGLE BID AUCTION ON A
SUBCLASS OF MPS-D

In this appendix we prove theorem 3.9 which states that for the special case where
the valuation v satisfies v ∈ max(PH-2 ∩ SM-d) - the price of anarchy of the single-
bid auction is no greater than 2

1−e−2 (d+ 1)Hm/2. The main difference when comparing
to the proof of Theorem 3.1 is that we show that max(PH-2 ∩ SM-d) valuations are
(d + 1)Hm/2-pointwise approximated by 2-CH valuations (as opposed to (d + 1)-CH
valuations).

LEMMA B.1. The class PH-2∩SM-d is pointwise (d+1)Hm/2-approximated by 2-CH
valuations

PROOF. Let v ∈ PH-2 ∩ SM-d be a valuation function, and let X be a set of items.
W.l.o.g. assume X = [m], and both terms will be used interchangeably during the proof.
Let G = (V,E) be its graphical representation with weights we ≥ 0 for edges e ∈ E and
wz for vertices z ∈ V . According to Vizing’s theorem[Vizing 1964] the chromatic index
of every graph with maximal vertex-degree d is either d or d + 1. Therefore there is a
colouring of the edges C = {Ci}i with |C| ≤ d + 1. Denote w(Ci) =

∑
e∈Ci we - the sum

of the weights of all edges in Ci. Let imax be the ”heaviest” color, i.e. the color with the
property:

imax = arg max
i
w(Ci)

The heaviest color is at least as heavy as the average:

w(Cimax) ≥ 1

|C|
∑
i

w(Ci) ≥
1

d+ 1

∑
i

w(Ci) (6)



And so:

(d+ 1)
∑

e∈Cimax

we = (d+ 1)w(Cimax) ≥
∑
i

w(Ci) =
∑
e∈E

we (7)

As a colour, Cimax is a set of edges without common vertices, and can be seen as
partition to disjoint pairs of some subset of V . Let Q be the partition of [m] that we
get by pairing all vertices not in

⋃
e∈Cimax

e in some way, and adding it to Cimax . Q now
satisfies: ∑

`

v(Q`) ≥ [
∑
z∈V

wz + w(Cimax)] ≥
∑
z∈V

wz +
1

d+ 1

∑
e∈E

we

≥ 1

d+ 1
[sumz∈V wz +

∑
e∈E

we] =
v([m])

d+ 1
(8)

Given a partition Q, let hQ be the function:

hQ(X) =
v(X)

|X|β
∑
`

|Q`| =
v(X)

β

Like in the proof of Lemma 3.7, we iteratively define a sequence of sets Si in the
following way. Let S1 = X. if there exists a set T1 which satisfies v(T1) < hQ(T1),
assume w.l.o.g that T1 is a union of sets from Q and define for every i > 1, Si =
Si−1 \ Ti−1. Because Ti is a union of elements from Q, so is Si, and so Q induces a
partition QSi on Si and a d + 1-CH function hQSi (T ) = v(X)

|Si|β
∑
Q`∈QSi :Q`⊆T

|Q`|. If for
some i it holds that hQSi (T ) ≤ v(T ) for all T , then hQSi (T ) pointwise β-approximates v.
Otherwise, the iterative process terminates at some imax because |Si| decreases every
iteration. If the process terminates and none of the functions hQSi β-approximates v
at X, then we have two partitions of the set X: {Q`}` and {Ti}i, so that every Q` is a
subset of some Tj . Therefore:

v(X)

d+ 1
≤
∑
`

v(Q`) ≤
∑
i

v(Ti) <
∑

hQSi (Ti) = v(X)
β

∑ |Ti|
|Si| (9)

Where the first inequality is (8), the second is by super-modularity of the class PH-2,
and third inequality is by construction. Rearranging terms yields:

β < (d+ 1)
∑ |Ti|

|Si|

Using equation (3) from the proof of lemma 3.7, we get:

β < (d+ 1)
∑ |Ti|

|Si| ≤ (d+ 1)

m
2∑

k=1

1

k
≤ (d+ 1)Hm/2

So for every β ≥ (d + 1)Hm/2, there is a 2-CH function that β-approximates v at
X.

We use lemma B.1 to prove theorem 3.9:

PROOF OF THEOREM 3.9. The single bid auction is ( 1
2 (1− e−2), 1)-smooth when all

bidders have valuations in 2-CH. Using the extension lemma for pointwise approxima-



tion we get that for valuations in PH-2∩SM-d, the single bid auction is (
1
2 (1−e

−2)

(d+1) log(m2 ) , 1)-
smooth. The price of anarchy bound follows by applying observation 3.5.

C. OMITTED PROOFS
PROOF OF LEMMA 2.10. For an item j 6∈ S it holds that v(j|S) =

∑
e⊆S∪j we −∑

e⊆S we =
∑
e⊆S∪j:j∈e we, therefore, for two items j′ 6= j not in S it holds that: v(j|S ∪

j′) − v(j|S) =
∑
e⊆S∪{j,j′}:j∈e we −

∑
e⊆S∪j:j∈e we =

∑
e⊆S∪{j,j′}:{j,j′}⊆e we. Therefore

j′ ∈ Dep+(j) if and only if the last sum is positive for some S ∈ [m] \ {j, j′}, which in
turn holds if and only if we > 0 for some e so that {j, j′} ⊆ e.

PROOF OF THEOREM 4.3. Fix a valuation profile v, and let σ be a coarse correlated
equilibrium. Recall that the quality of a coarse correlated equilibrium σ is measured
by its expected social welfare Ea∼σ [

∑
i vi(a)], where vi(a) denotes the value of agent i

given the action profile a. For every action profile a it holds that vi(a) = ui(a) + Pi(a),
therefore by linearity of expectation:

E
a∼σ

[∑
i

vi(a)

]
=
∑
i

E
a∼σ

[ui(a)] +
∑
i

E
a∼σ

[Pi(a)] (10)

Since σ is a coarse correlated equilibrium it holds that for every mixed strategy σ′i:

E
a∼σ

[ui(a)] ≥ E
a∼σ

[
E

a′i∼σ′i
[ui(a

′
i,a−i)]

]
(11)

Summing for all agents, and by linearity of expectation we get that:

∑
i

E
a∼σ

[ui(a)] ≥ E
a∼σ

[∑
i

E
a′i∼σ′i

[ui(a
′
i,a−i)]

]
(12)

Equation (12) holds also for the action a∗i (v) for each agent i that is given by ρ-piecewise
smoothness. Therefore:∑

i

E
a∼σ

[ui(a)] ≥ E
a∼σ

[∑
i

E
a′i∼a∗i (v)

[ui(a
′
i,a−i)]

]

≥ E
a∼σ

[
λSW(OPT (v))− µ

∑
i

Pi(a)

]
=λ · SW(OPT (v))− µ

∑
i

E
a∼σ

[Pi(a)]

Where the second inequality follows by ρ-piecewise smooth, with the guaranteed (λ, µ)

pair for v that satisfies ρ ≥ max{µ,1}
λ . Combining with equation 10 we get that:

E
a∼σ

[∑
i

vi(a)

]
≥ λ · SW(OPT (v)) + (1− µ)

∑
i

E
a∼σ

[Pi(a)]

If µ ≤ 1 the result follows by λ ≥ 1/ρ. For µ > 1, we note that Ea∼σ [vi(a)] ≥ Ea∼σ [Pi(a)]
because agents have the possibility to withdraw, therefore by rearranging terms and



linearity of expectation:

E
a∼σ

[∑
i

vi(a)

]
≥ λ

µ
· SW(OPT (v)) ≥ 1

ρ
· SW(OPT (v))

PROOF OF LEMMA 4.8. Let SA be the random variable denoting the number of
rounds A was selected over m runs of the mechanism. Let α = 1

2 . Then, pm(1 − α) =
pm
2 ≥ T ≥ TA, and so by a multiplicative Chernoff bound

P
[
SA
m
≤ pm

2

]
= P [SA ≤ T ] ≤ P [SA ≤ pm(1− α)] ≤ e−mpα

2/2 = e−mp/8.

For m ≥ 8 ln 2
δ

p , this quantity is at most δ
2 . Making the same argument for B (since

1−p ≥ p) and taking a union bound implies that both mechanismA and B wil have been
run for at least TA rounds with probabilty at least 1 − δ. Since after TA rounds of no-
regret learning for mechanism A’s bid guarantees one is at an ε-correlated equilibrium
(and similarly for mechanism B), this implies that with probability 1 − δ, one will
have reached an ε-correlated equilibrium for both A and B, and thus Mp, after m ≥
max( 2T

p ,
8
p · ln

1
δ ) rounds of no-regret learning with respect toMp.

PROOF OF LEMMA 4.10. Consider a valuation profile v and let S∗ be an alloca-
tion that β-approximates the optimal allocation OPT (v). Consider an arbitrary bid
profile b = (b1, . . . , bn). Denote by pj(b) the price of item j under bid profile b. If
agent i deviates to a deterministic bid t <

vi(S
∗
i )

|S∗i |
, she can acquire the set S∗i only if

t > maxj∈S∗i pj(b). Therefore:

ui(t,b−i) ≥ (vi(S
∗
i )− t · |S∗i | ) · 1{t > max

j∈S∗i
pj(b)}

Given v, and a bundle of items B, let Di(B) be i’s average value-per-item of the
bundle B, i.e.,

Di(B) =
vi(B)

|B|

Furthermore, for ease of notation let D∗i = Di(S
∗
i ). Consider the randomized deviation

B′i distributed by the density function:

f(t) = c · 1

D∗i − t



on the support
[
0, c · (1− e−1/c)D∗i

]
. Then:

E [ui(B
′
i,b−i)] ≥

∫ c·(1−e−1/c)D∗i

maxj∈S∗
i
pj(b)

(vi(S
∗
i )− t · |S∗i |) f(t)dt

=c ·
∫ c·(1−e−1/c)D∗i

maxj∈S∗
i
pj(b)

vi(S
∗
i )− t · |S∗i |
D∗i − t

dt

=c ·
∫ c·(1−e−1/c)D∗i

maxj∈S∗
i
pj(b)

|S∗i | (D∗i − t)
D∗i − t

dt

=c · (1− e−1/c)vi(S∗i )− c ·max
j∈S∗i

pj(b) · |S∗i |

Summing over all agents we get:

∑
i

E [ui(B
′
i,b−i)] ≥ c · (1− e−1/c)SW(S∗)− c ·

∑
i

max
j∈S∗i

pj(b) · |S∗i | (13)

≥ c · (1− e−1/c)SW(S∗)− c ·
∑
i

|S∗i |
∑
j∈S∗i

pj(b) (14)

For every i it holds that |S∗i | ≤ γ therefore:

∑
i

E [ui(B
′
i,b−i)] ≥c · (1− e−1/c)SW(S∗)− c · γ

∑
i

∑
j∈S∗i

pj(b)

≥c · (1− e−1/c)β · SW(OPT(v))− c · γ
∑
j

pj(b)

As required.

PROOF OF LEMMA 4.11. Consider a valuation profile v, and assume there exists
an agent i∗ so that vi∗([m]) ≥ β · SW(OPT (v)). Consider an arbitrary bid profile
b = (b1, . . . , bn), and let b′(b) be the winning bid in b. If agent i∗ deviates to a deter-
ministic bid t ≤ vi∗([m]), then i∗ can acquire the grand bundle for sure only if t > b′(b).
Therefore:

ui∗(t,b−i∗) ≥ (vi∗([m])− t) · 1{t > b′(b)}

Note that
∑
i∈N Pi(b) = b′(b). Consider the randomized deviation B′i∗ distributed by

the density function:

f(t) =
1

vi∗([m])− t



on the support
[
0, (1− e−1)vi∗([m])

]
. Then:

E [ui∗(B
′
i∗ ,b−i∗)] ≥

∫ (1−e−1)vi∗ ([m])

b′(b)

(vi∗([m])− t) f(t)dt

=

∫ (1−e−1)vi∗ ([m])

b′(b)

1 · dt

=(1− e−1)vi∗([m])− b′(b)

≥β · (1− e−1) · SW(OPT (v))−
∑
i∈N

Pi(b)

Since all other agents can acquire a non-negative utility, we conclude.

PROOF OF LEMMA 4.13. Fix a valuation profile v ∈ LOP (z). There exists an allo-
cation S∗ and a set of agents A ⊆ N so that SW(S∗) = SW(OPT(v)) and for every
i ∈ A it holds that |S∗i | ≥ z, and that

∑
i∈A vi(S

∗
i ) ≥ 1

2SW(S∗). Since |A| · z ≤ m
it must be that |A| ≤ m

z . Therefore, there must exist an agent i∗ ∈ A so that
vi∗(S

∗
i∗) ≥ 1

|A|
∑
i∈A vi(S

∗
i ) ≥ z

2mSW(S∗). The assertion of the lemma is established
by applying lemma 4.11.

PROOF OF LEMMA 4.14. Fix a valuation profile v 6∈ LOP (z). Consider an optimal
allocation S∗. Consider the set of agents A = {i ∈ N : |S∗i | < z}. Since v 6∈ LOP (z) it
must be that

∑
i∈A vi(S

∗
i ) > 1

2SW(S∗), otherwise the set of agents N \ A would imply
that v ∈ LOP (z). Therefore, by lemma 4.10, for every c > 0 the single bid auction is
( c2 · (1− e

−1/c), c · z)-smooth with respect to valuation profiles not in LOP (z).

C.1. An Almost Tight Lower Bound For The Hybrid Mechanism
Denote by Hyb the hybrid mechanism composed of the single-bid and the grand-bundle
auctions with probability 1/2. The upper bound that we have shown of 4

1−e−1

√
m on

the PoA of the Hyb mechanism is tight, up to the constant 4/(1− e−1), as shown in the
following proposition15.

PROPOSITION C.1. There exists a valuation profile v for which the PoA of the Hyb
mechanism with regard to pure Nash equilibria is at least

√
m .

PROOF. For some k, Consider 2k bidders with valuation functions vt, xt for t = 1, ..., k
and items 1, 2, . . . , k2 = m. In a slight abuse of notation we will say “bidder vt” and
mean “the bidder with valuation vt”. Divide [m] into k bundles of size k each - B1, ..., Bk
with Bt = {(t − 1) · k + j : j = 1, . . . , k}. For every t = 1, ..., k, vt ∈ PH-2 ∩ SM-(k − 1),
has a star shaped valuation where the vertex set of the star is Bt, the center is item
(t − 1)k + 1, and the weight of each edge is 1. Also, for very t, bidder xt is interested
only in the item (t− 1)k + 1 with a value of k−1k + ε. Let b denote a PNE of SBA and b′

a PNE of GB auction. The profile (b,b′) is a pure Nash equilibrium of Hyb. Clearly the
optimal allocation gives each bundle Bt to bidder vt, yielding a social welfare of k(k−1).
By the same argument that is used to show Observation 2.8, if the SB mechanism is
played than bidders vt win nothing and bidders xt win all star centers (items of the
form (t−1)k+1 for t = 1, 2 . . . , k) and get a total social welfare of k(k−1k +ε) = k−1+kε.
The total value of each bidder for the grand bundle [m] is at most k − 1 so the GB
auction cannot achieve a social welfare of more than k−1. We get that if Hyb is played,

15Actually this lower bound holds for every 0 < p < 1.



regardless of which of the two mechanisms (SB or GB) is actually played, the obtained
social welfare is no more than k − 1 + kε, which is arbitrarily close to 1

k = 1√
m

of the
optimal.

C.2. Omitted Part of the Proof of Lemma 3.7
If |X| is not divisible by d+1, exactly one of the partition elementsQ` is strictly smaller
than d+ 1, and hence there is exactly one index î for which Tî is not a multiple of d+ 1.
Denote r = |Tî| mod (d + 1) and ti = |Ti|

d+1 . Define ri = |Si| mod (d + 1) and note that
for all i ≤ î, ri = r and for all i > î, ri = 0. Finally, denote si = |Si|−ri

d+1 = b |Si|d+1c Now
calculate:

∑
i

|Ti|
|Si|

=
∑
i 6=î

|Ti|
|Si|

+
|Tî|
|Sî|
≤
∑
i 6=î

|Ti|
|Si| − ri

+ 1 =
∑
i 6=î

ti
si

+ 1 ≤
∑
i

ti−1∑
j=0

1
si

+ 1

≤
∑
i

ti−1∑
j=0

1
si−j + 1 =

s1−1∑
j=0

1
s1−j + 1 = Hs1 + 1 ≤ H

b
|X|
d+1 c

+ 1

C.3. A Combined Lower Bound For The Single-Bid Auction
PROOF OF THEOREM 3.11. We will use a modification of the example given in [De-

vanur et al. 2015]. Let k be some number divisible by d, and let [m] be composed of k
bundles-{B0, ..., Bk−1}, where bundle Bt is of size |Bt|= kt. Let there be 4k + 1 bidders.
The first bidder (which we refer to as the “strong” bidder), has a valuation w (which
is PH-2 ∩ SM-(d− 1)) as follows: The items in each bundle Bt are divided to subsets
of size d, and each of these groups is a d-star-graph in w’s hypergraph representation,
with edge weight of d

d−1k
k−t. In total, ∀t, w(Bt) = kk, and w([m]) = kk+1. The next

2k bidders, with valuations marked x0, x
′
0, ..., xk−1, x

′
k−1 are as follows. First, denote

λ = d
d+k . For each t = 0, ..., (k − 1), xt is additive, is only interested in (1 − λ) = k

d+k

of the stars inside Bt, and only in the center of each star. For each center j of any
of these stars, xt(j) = kk−t−1. For all other items j, xt(j) = 0. In addition x′t = xt.
Note that the maximal value that bidder xt can get (by winning all of her desired
items) is xt([m]) = xt(Bt) = 1

d (1−λ)kk−1. The final 2k bidders, with valuations marked
v0, v

′
0..., vk−1, v

′
k−1 are as follows: for each t = 0, ..., (k − 1), vt is additive, is only inter-

ested in λ = d
d+k of the stars inside Bt (the stars that xt is not interested in), and only

in the center of each star. For these special items, vt = kk−t + ε. For all other items,
vt = 0. in addition v′t = vt. Note that if bidder vt wins all of her desired items the
maximum value she can get is vt([m]) = vt(Bt) = 1

dλk
k + 1

dλk
tε.

Obviously, the optimal allocation gives all items to the strong bidder and yields a
social welfare of kk+1. Due to best-response dynamics, in an equilibrium, every bidder
vt, v

′
t will bid exactly kk−t+ε and every bidder xt, x′t will bid exactly kk−t−1. The special

bidder will bid some number b. Whatever the value of b is, she will win no more than
two bundles, and no more than a fraction of (1 − λ) = k

d+k out of each of those two
bundles. Assuming, w.l.o.g, that bidders vt and xt win every tie breaking, each of them
wins all of her desired items. The social welfare will be:

SW(EQ) ≤ 2(1− λ)kk + k · 1

d
λkk +

1

d
(1− λ)kk−1 = 2

k

d+ k
kk+

1

d

d

d+ k
kk+1 +

1

d(d+ k)
kk = O(

1

d+ k
kk+1)



This yields PoS = SW(OPT )

SW(EQ)
= Ω(d+ k) = Ω(d+ logm

log logm )
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