
15-122 Assignment 1 Page 1 of 10

15-122 : Principles of Imperative Computation

Summer 1 2012

Assignment 1: Image Manipulation

(Programming Part)

Due: Monday, May 28, 2012 by 23:59

For the programming portion of this week’s homework, you’ll review how images are stored
in the computer using C0 (described in Section 1.1), and then you’ll write four C0 files:
imageutil.c0 (described in Section 1.2), quantize.c0 (described in Section 1.3), rotate.c0
(described in Section 1.4), and blur.c0 (described in Section 1.5). You’ll also have an
opportunity to design your own image processing function (described in Section 1.6).

You should submit your code electronically by 11:59 pm on the due date. Detailed submission
instructions can be found below.

15-122 Assignment 1 Page 2 of 10

1 Assignment: Image Manipulation (25 points)

Starter code. Download the file hw1-starter.zip from the course website. When you
unzip it, you will find a number of files including these three C0 files— quantize- main.c0,
rotate-main.c0, and blur-main.c0 —corresponding to the three required image manipu-
lation problems below. Each file has a main() function that will read an image from disk,
call your code on its representation, and then write the result image back to disk. Do not
submit these files when you hand in your code, and the files you submit should
not include main() functions.

In addition, you will find a sample manipulation remove-red.c0, which removes the red
channel from each pixel of an image, and its associated main file remove-red-main.c0. This
sample provides a complete program that you can compile and execute, and you may pattern
your code after the code in remove-red.c0 if you find it convenient to do so. (The code for
the remove red function also appears in Appendix A.)

Finally, you will also see an images/ directory with some sample input images and
some sample outputs for some of the manipulations. On a Linux cluster machine, there are
several programs you can use to view the images, including display, gpicview, qiv, eog,
and gthumb. Play around and find one you like.

Compiling and running. To compile one of your completed exercises just specify the
file(s) on the command line in the order you want them compiled. You can compile your
files on any Andrew system by running the command

cc0 <file1>.c0 <file2>.c0 <file3>.c0 -o <executablefilename>

from the directory where your c0 files reside. This will will place the compiled binary in the
file <file> rather than the usual default a.out.

Once you’ve compiled <file> in this way, you can run it with the command

./<executablefilename>

The file so produced will expect some options of its own, at the very least an option -i

<input file> specifying the input image to manipulate. If you run one of the programs
without any arguments, you will get a short usage message explaining the options particular
to that program.

As a concrete example, you can compile the remove-red filter with dynamic checking
and run it on the sample image g5.png in the images/ directory by running the following
commands in sequence:

cc0 -d remove-red.c0 remove-red-main.c0 -o remove-red

./remove-red -i images/g5.png -o images/g5nored.png

If you have any problems compiling or running your code as described here, you should
contact the course staff.

15-122 Assignment 1 Page 3 of 10

Submitting. Once you’ve completed some files, you can submit them by running the
command

handin -a hw1 <file1>.c0 ... <fileN>.c0

You can submit files as many times as you like and in any order. When we grade your
assignment, we will consider the most recent version of each file submitted before the due
date. If you get any errors while trying to submit your code, you should contact the course
staff immediately.

Annotations. Be sure to include //@requires, //@ensures, and //@loop invariant

annotations in your program. You should write these as you are writing the code rather
than after you’re done: documenting your code as you go along will help you reason about
what it should be doing, and thus help you write code that is both clearer and more correct.

Style. Strive to write code with good style: indent every line of a block to the same level,
use descriptive variable names, keep lines to 80 characters or fewer, document your code
with comments, etc. If you find yourself writing the same code over and over, you should
write a separate function to handle that computation and call it whenever you need it. We
will read your code when we grade it, and good style is sure to earn our good graces. Feel
free to ask on the course bboard (academic.cs.15-122) if you’re unsure of what constitutes
good style.

1.1 Image Manipulation Overview

The three short programming problems you have for this assignment deal with manipulating
images. An image will be stored in a one-dimensional array of integers, where each integer
is a 32-bit value representing one pixel of the image. Pixels are stored in the array row by
row, left to right starting at the top left of the image. For example, if a 5× 5 image has the
following pixel ”values”:

a b c d e

f g h i j

k l m n o

p q r s t

u v w x y

then these values would be stored in the array in this order:

a b c d e f g h i j k l m n o p q r s t u v w x y

In the 5× 5 image, the pixel i is in row 1, column 3 (rows and columns are indexed starting
with 0) but is stored in the one-dimensional array at index 8. An image must have at least
one pixel.

Each pixel in the array is a 32-bit integer that can be broken up into 4 components with
8 bits each:

a1a2a3a4a5a6a7a8 r1r2r3r4r5r6r7r8 g1g2g3g4g5g6g7g8 b1b2b3b4b5b6b7b8

15-122 Assignment 1 Page 4 of 10

where:

a1a2a3a4a5a6a7a8 represents the alpha value (how opaque the pixel is)
r1r2r3r4r5r6r7r8 represents the intensity of the red component of the pixel
g1g2g3g4g5g6g7g8 represents the intensity of the green component of the pixel
b1b2b3b4b5b6b7b8 represents the intensity of the blue component of the pixel

Each 8-bit component can range between a minimum of 0 (binary 00000000 or hex 0x00) to
a maximum of 255 (binary 11111111 or hex 0xFF).

For example, a pixel that is completely opaque with only green at its maximum intensity
would be stored as the integer 0xFF00FF00. An opaque pixel that is medium gray would
be 0xFF7F7F7F (equal parts red, green, and blue at medium intensity).

For the rest of the assignment, we will work under the assumption of a type definition
that makes pixel an alias for int:

typedef int pixel;

Since ints are used for many other things (like the width and height of an image, for
example), a type alias is useful for distinguishing those instances where we mean to interpret
an int as an RGB pixel. You should include this typedef in your code and use the pixel

type when appropriate.

1.2 Creating a set of Image Utility Functions

In this problem, you will complete the implementation of the functions specified in the
imageutil.c0 file. This file contains functions that may be helpful for you in the subsequent
problems. Read the comments for each function to determine what each function should do.

TASK 1 (6 pts.) Complete the C0 file imageutil.c0 that includes a number of helpful
image utility functions. For each function, in addition to completing the code, write the
strongest precondition(s) and postcondition(s) (using requires and ensures). Include
additional assertions and loop invariants as necessary. We will compile your program as
follows:

cc0 -d imageutil.c0 imageutil-main.c0

using your imageutil.c0 file. Your code must compile using these instructions with files
shown in the order given. Do NOT include a main function in your imageutil.c0 file. You
can write your own imageutil-main.c0 if you wish for testing purposes.

15-122 Assignment 1 Page 5 of 10

Figure 1: A sporty coupe with quantization level 0 (left) and level 7 (right).

1.3 Quantization of an Image

In this problem, you will implement a function that achieves a quantization effect on an
image. Quantization reduces the total number of colors used in an image. You can see an
example in Figure 1.

Given an ordinary image of size w × h and a quantization level q between 0 and 7,
inclusive, for each pixel in the image, take each color component (red, green and blue) and
clear the lowest q bits. For example, suppose the color components for a pixel are given by
the bytes

RED GREEN BLUE

01101011 10111110 11010111

If the quantization level is 5, then the resulting pixel should have the following color com-
ponents (note how the lower 5 bits are all cleared to 0):

RED GREEN BLUE

01100000 10100000 11000000

Note that an image processed with a quantization level of 0 should not change. For each
pixel, do not change its alpha component.

TASK 2 (6 pts.) Create a C0 file quantize.c0 with a function quantize matching the
following prototype:

pixel[] quantize(pixel[] pixels, int width, int height, int q_level);

This function should implement the algorithm described above, given an array pixels repre-
senting an image of width width and height height using a quantization level q level. The
returned array should be the representation of the image after quantization has occurred.
You may include any auxiliary functions you need in the same file, but you should not in-
clude a main() function. If the supplied quantization level is out of range, your program
should abort with an annotation failure when compiled and run with the -d flag.

We will compile your program as follows:

cc0 -d imageutil.c0 quantize.c0 quantize-main.c0

using your imageutil.c0 and quantize.c0 files. Your code must compile using these in-
structions with files shown in the order given. Do NOT include a main function in your
quantize.c0 file.

15-122 Assignment 1 Page 6 of 10

Figure 2: Original image (left); Image after “rotation effect”

1.4 Rotation Effect

In this problem, you will create a rotation effect on an image.
Your task here is to implement a function that takes as input an image of size w × h

and creates a “Rotation” image of size 2w× 2h that contains the same image repeated four
times, the top right image containing the original image, the top left containing the original
image rotated 90 degrees counterclockwise, the bottom left containing the original image
rotated 180 degrees, and the bottom right containing the original image rotated 90 degrees
clockwise. Note that the original image must have the same width and height in
order to do the “rotation” effect. A sample image is shown in Figure 2.

TASK 3 (6 pts.) Create a C0 file rotate.c0 implementing a function rotate matching
the following prototype:

pixel[] rotate(pixel[] pixels, int width, int height);

where width and height represent the width and height of the original input image.
The returned array should be the array representation of the “Rotation” image. You

may include any auxiliary functions you need in the same file, but you should not include
a main() function. If the supplied image is not “square” (i.e. its width does not equal its
height), your program should abort with an annotation failure when compiled and run with
the -d flag.

We will compile your program as follows:

cc0 -d imageutil.c0 rotate.c0 rotate-main.c0

using your imageutil.c0 and rotate.c0 files. Your code must compile using these instruc-
tions with files shown in the order given. Do NOT include a main function in your rotate.c0
file.

15-122 Assignment 1 Page 7 of 10

1.5 Blurring an Image

In this problem, you will write a function to blur an image. This is done by using a “mask”.
A mask is an n × n array of non-negative integers representing weights. (Note: although
weights can be 0, the weight in the center position of the mask cannot be zero.) For our
purposes, n must be odd. The origin of the mask is its center position. For each pixel in the
input image, think of the mask as being placed on top of the image so its origin is on the
pixel we wish to alter. The original intensity value of each pixel under the mask is multiplied
by the corresponding value in the mask that covers it. These products are added together
and then we divide by the total of the weights in the mask to get the new intensity of the
mask. Always use the original values for each pixel for each mask calculation, not the new
values you compute as you process the image.

For example, refer to Figure 3, which shows a 3× 3 mask and an image that we want to
blur. Suppose we want to compute the new intensity value for pixel e. Imagine overlaying
the mask so its center position is on e. We would compute the new intensity for the pixel e
as:

(a + 3b + c + 3d + 5e + 3f + g + 3h + i) / 21

This calculation is done three times for each pixel, once for its red channel, once for its green
channel, and once for its blue channel. Do not change the alpha channel of the pixel.

Note that sometimes when you center the mask over a pixel you want to blur, the mask
will hang over the edge of the image. In this case, compute the weighted sum of only those
pixels the mask covers. Remember that you must divide by the sum of only those weights
that you use from the mask. For the example shown in Figure 4, the new intensity for the
pixel e is given by:

(3b + c + 5e + 3f + 3h + i) / 16

Figure 5 shows a sample image blurred using the following masks:

1 3 1 1 2 3 2 1

3 5 3 2 3 4 3 2

1 3 1 3 4 5 4 3

2 3 4 3 2

1 2 3 2 1

TASK 4 (7 pts.) Create a C0 file blur.c0 with a function blur matching the following
prototype:

pixel[] blur(pixel[] pixels, int width, int height,

int[] mask, int maskwidth);

This function should implement the blur algorithm described above, given an array pixels

representing an image of width width and height height, using an array of weights mask

with width (and height) maskwidth. The returned array should be the representation of
the blurred image. You may include any auxiliary functions you need in the same file, but
you should not include a main() function. If the supplied image does not match the size

15-122 Assignment 1 Page 8 of 10

Figure 3: Overlay the 3 X 3 mask over the image so it is centered on pixel e to compute the
new value for pixel e.

Figure 4: If the mask hangs over the edge of the image, use only those mask values that
cover the image in the weighted sum.

given by width and height, or if the mask is not square or does not match the width given
by maskwidth or if the mask has non-positive integers or if the maskwidth is not odd, your
program should abort with an annotation failure when compiled and run with the -d flag.

We will compile your program as follows:

cc0 -d imageutil.c0 blur.c0 blur-main.c0

using your imageutil.c0 and blur.c0 files. Your code must compile using these instructions
with files shown in the order given. Do NOT include a main function in your blur.c0 file.

15-122 Assignment 1 Page 9 of 10

Figure 5: Andrew Carnegie: original image (left), blurred with a 3 × 3 mask (middle), and
a 5× 5 mask (right). See text for mask values.

1.6 Your own image processing algorithm (Optional)

TASK 5 (Optional)
Write a function manipulate that performs an image manipulation of your choice match-

ing the following prototype:

pixel[] manipulate(pixel[] pixels, int width, int height);

You will also have to write two small functions that express the width and height of the
result of your manipulation in terms of the width and height of the input image:

int result_width(int width, int height);

int result_height(int width, int height);

The starter code archive contains a file manipulate-starter.c0 with empty stubs for these
functions and a main file manipulate-main.c0 that you can compile against to get a binary
that runs your manipulation.

If you choose to do this task, be creative! A “judges’ prize” will be awarded to the student
whose submission “impresses” the course staff the most. (Of course, we reserve the right to
decide for ourselves what that means!)

15-122 Assignment 1 Page 10 of 10

A Sample Code: Remove Red Channel from an Image

/* make pixel a type alias for int */

typedef int pixel;

pixel[] remove_red (pixel[] A, int width, int height)

//@requires \length(A) >= width*height;

//@ensures \length(\result) == width*height;

{

int i;

int j;

pixel[] B = alloc_array(pixel, width*height);

for (j = 0; j < height; j++)

//@loop_invariant 0 <= j && j <= height;

{

for (i = 0; i < width; i++)

//@loop_invariant 0 <= i && i <= width;

{

// Clear the bits corresponding to the red component

B[j*width+i] = A[j*width+i] & 0xFF00FFFF;

}

}

return B;

}

