
15-122 Assignment 5 Page 1 of 8

15-122 : Principles of Imperative Computation

Summer 1 2012

Assignment 5: Lights Out!

(Programming Part)

Due: Friday, June 15, 2012 by 23:59

For the programming portion of this week’s homework, you’ll implement a solver for a
puzzle game called Lights Out. You’ll reuse the hash table code that we discussed in class.
This code reuse depends on the fundamental idea of abstraction: separating interface from
implementation. You will write four C0 files corresponding to different tasks:

• board.c0 (described in Section 1.2),

• bit-array.c0 (described in Section 1.3),

• client.c0 (described in Section 1.4),

• lightsout.c0 (described in Section 1.5)

You should submit these files electronically by the due date. Detailed submission instructions
can be found below.



15-122 Assignment 5 Page 2 of 8

1 Assignment: Lights Out! (25 points)

Starter code. Download the file hw5-starter.zip from the course website. When you
unzip it, you will find the following files

bit-array.c0 Bit array Task 1
board.c0 Game board representation Task 2
client.c0 Client-side code for the hash table Task 3
lightsout.c0 Game solver Task 4

hw5-main.c0 The driver program for testing DO NOT TOUCH
expected.txt Output of the test driver DO NOT TOUCH
hash-map.c0 Generic implementation of a hash map DO NOT TOUCH
types.h0 Typedefs ktype, vtype, and queue elem DO NOT TOUCH
queue.c0 Generic implementation of a queue DO NOT TOUCH
readfile.c0 Code for reading words from a file DO NOT TOUCH

You will also see a boards/ directory with some sample text files you may use to test
your code.

Testing your code: Boards from External Input When testing your code, it may be
convenient to read starting boards from files. We can represent boards in files: each “off”
light is an O character and each “on” light is a # character, and each row is a single string
with no spaces on its own line. This format will be described in greater depth later in the
writeup. We have provided a read_board function in board.c0 that reads a board from a
file in the format described above.

We have provided the HW5 main in hw5-main.c0. Compile and test with:
cc0 -d -x hw5-main.c0 (-x immediately executes the compiled file)
This will only work once you’ve completed all tasks. Please test your individual functions

as you work on this programming assignment.

Compiling and running. For this homework, use the cc0 command as usual to compile
your code. Don’t forget to test your annotations by compiling with the -d switch to enable
dynamic checking. Warning: You will lose credit if your code does not compile with -d.

Submitting. Once you have completed some files, you can submit them by running the
command

handin -a hw5 board.c0 bit-array.c0 client.c0 lightsout.c0

The handin utility accepts a number of other switches you may find useful as well; try
handin -h for more information.

You can submit files as many times as you like and in any order. When we grade your
assignment, we will consider the most recent version of each file submitted before the due
date. If you get any errors while trying to submit your code, you should contact the course
staff immediately.



15-122 Assignment 5 Page 3 of 8

Annotations. Be sure to include appropriate //@requires, //@ensures, //@assert, and
//@loop invariant annotations in your program. You should write these as you are writing
the code rather than after you’re done: documenting your code as you go along will help you
reason about what it should be doing, and thus help you write code that is both clearer and
more correct. Annotations are part of your score for the programming problems;
you will not receive maximum credit if your annotations are weak or missing.

Style. Strive to write code with good style: indent every line of a block to the same level,
use descriptive variable names, keep lines to 80 characters or fewer, document your code with
comments, etc. We will read your code when we grade it, and good style is sure to earn our
good graces. Feel free to ask on the course bboard (academic.cs.15-122) if you’re unsure
of what constitutes good style.

Task 0 (8 points) 8 points on this assignment will be awarded based on annotations and
style, so be sure to follow the guidelines given above.



15-122 Assignment 5 Page 4 of 8

1.1 Lights Out: Overview

Lights Out is an electronic game consisting of a grid of lights, usually 5 by 5. The lights are
initially presented in a random pattern of on and off, and the objective of the game is to turn
all the lights off. The player interacts with the game by touching a light, which toggles its
state and the state of all of its cardinally adjacent neighbors. It is often quite tricky to see
how to solve a given configuration, if it is solvable at all, since the path to the solution may
involve seemingly-backward progress as lights must be turned on to point the way towards
a final all-off state. Note that the coordinate (x, y) represents the xth column and the yth
row, with indices starting at (0, 0).

Figure 1: A sequence of moves in Lights Out. (Image: Wikipedia)

An examination of the puzzle leads to interesting observations - changing the state of a
square an even number of times is equivalent to not changing it at all; changing the state an
odd number of times is equivalent to changing it only once. Furthermore, the order in which
we touch various squares is unimportant it is only the number of times we touch a square
that matters. These facts imply that, if the puzzle can be solved at all, it can be solved by
touching some squares exactly once and the others not at all. Thus, a solution consists of
indicating which squares to touch once.

A simple solver would proceed by a breadth-first search (using a queue) similar to the
word ladder search you implemented in Homework 3, but with one essential difference:
sequences of moves are not explicitly stored. In Homework 3, sequences of words were stored
in stacks, and once the destination was found, the corresponding stack already contained all
intermediate words. In this assignment, the process of finding the search-order predecessor
of a game position must be handled externally.

1.2 Representing the Board

We represent a Lights Out board as a bit array along with its width and height.

typedef int bitarray;

typedef struct board* board;

struct board {

int width; // the number of columns

int height; // the number of rows

bitarray lights;

};



15-122 Assignment 5 Page 5 of 8

Since the bit array representing the state of the lights is given as a 32-bit int, it is impor-
tant that the total area of the board be less than or equal to 32, an invariant that’s checked
by the specification function is_board.

1.3 The bit array

The bit array is interpreted as a grid in the usual fashion: position (x, y) of a w × h grid is
bwy+x. For example, if O represents a light in the “off” state and # represents a light in the
“on” state, the board

#O#

O##

#OO

would be represented as 001110101, i.e., 117. We interpret the indices starting from the
least significant bit, such that an index i refers to the 2i bit of the integer when interpreted
unsigned.

b31b30 . . . b2b1b0

We represent the state of the board as an integer rather than as an array of boolean values
for two reasons. First, we will soon wish to store the state in various data structures, and we
want to be careful not to let any other piece of code change the state after its been stored
in a data structure. By convention, arrays are treated as highly mutable, so we would not
expect to count on an array not changing unless we made our own separate copy of it. And
second, making many copies of an array puts a significant drain on our space performance,
which can have a serious impact on run-time performance due to effects like cache locality.

Bit arrays support operations similar to ordinary arrays, but in a persistent rather than
mutable fashion: to “update” a bit array, a function must return a new bit array. The
operations of getting the value of a bit, setting a bit to a particular value, and flipping a bit
are easily implemented using bitwise operators.

Task 1 (2 pts, bit-array.c0) Implement the interface functions bitarray_get,
bitarray_set, and bitarray_flip as specified in bit-array.c0.

Task 2 (6 pts, board.c0) Implement the interface functions is_board, board_get,
board_set, toggle_board, untoggle_board, and copy_board as specified in board.c0.
Several board functions (printing and reading in from a file) are already provided. Refer to
1.2 for this task.

1.4 The Hash Table Abstraction

In this section, you’ll write the necessary interface code to use a hash table to store the
pieces of game state that we’ll be tracking.

An essential concept in computational thinking is abstraction: the separation of inter-
face from implementation. When a program is composed of many independent components
whose boundaries are mediated by carefully specified interfaces, then the program can be



15-122 Assignment 5 Page 6 of 8

updated in a modular fashion: at any time, one implementation of a component can be
replaced by another without changing the overall meaning of the program, provided that the
new implementation adheres to the same interface as the old. Conversely, when interfaces
are left unspecified or violated, things can go horribly awry: arguably, some of the most
egregious software errors of all time were caused by a careless confusion of interface and
implementation.

The hash table code we wrote was completely independent of the actual type of keys
provided that they supported the operations of key equality, and key hashing, as well as
custom printing. So to actually build a real hash table, the client has to specify an element
type and definitions for these operations.

For this assignment we define the actual type of elements as a move to the current state
and the location that was toggled to get there. The following data structure will be placed
into the hash set, during algorithm execution:

typedef struct move* elem;

struct move {

int x; //coordinates of the toggle

int y;

};

Notice that one can calculate the previous board for current, by simply undoing the
toggle.

Task 3 (2 pts, client.c0) Implement the “client code” functions required to use with the
hash table: move_new, hmap_ktype_equal, hmap_hash.

When implementing hmap_hash, be sure to use some form of randomness to “smear”
keys uniformly across the table.

The appropriate abstraction to think of is this: you will begin with the starter board,
and generate all boards that are one move from the starter board. Each valid move will be
inserted into the hash table (the elements of the hash table are moves).

At some point, while exhaustively searching the set of moves, you will find a board with
all the lights out. You then need to find the sequence of moves which got you to that board.
All of this data is in your hashtable!

For this reason, the hash key for a move should be the move’s board.
Recall that we used a pseudorandom number generator, not reproduced here but shown

in the lecture notes, to “smear” strings uniformly over all possible hash values. The specially
chosen constants a = 1664525 and b = 1013904223 ensure that small changes in the input
string result in unpredictable changes in the hash value.

1.5 Solving the Puzzle

We can view the problem of searching for a solution to a Lights Out puzzle as the problem of
searching for a path in a graph:1 the nodes of the graph are board states, and the neighbors

1Recall that a graph is a collection of nodes and edges, where each edge connects a pair of nodes.



15-122 Assignment 5 Page 7 of 8

of a node are all the board states that are reachable with a single move. This game graph
is enormous, though—there are 225 different possible game states in the usual 5 × 5 game,
and each state has 25 neighbors, one for each light. So when we search through this graph,
we do not represent the graph explicitly in memory. Instead, we compute pieces of it lazily
as we require them, and consequently, we must make use of some interesting data structures
to support our search.

The idea behind the algorithm is quite close to what you implemented for searching for
a word ladder in Homework 3, and your code will consequently look quite similar. Instead
of searching for a sequence of words, though, you are searching for a sequence of moves
(x1, y1), . . . , (xn, yn) that leads from an initial state to the all-“off” state. Instead of consid-
ering the next possible moves to be the set of words one letter different from a given word,
you will compute every possible move you might make. And instead of maintaining a stack
of words, you will maintain a hashtable from boards to the moves which led to them. Review
the description of struct move in the previous section.

Throughout the algorithm you keep a queue of boards to later explore, and a hashtable
from boards to moves.

1. Begin by enqueueing the initial board. Add it to the hash table as well, to note that
it has been seen. The initial board can have arbitrary nonnegative toggle position.

2. Repeat the following as long as the work queue isn’t empty: dequeue a board, compute
all of its neighboring boards and their moves, and for each board you haven’t already
seen, enqueue it and add the corresponding move to the hash table.

3. If you ever encounter the winning board—with all lights in the “off” position—reconstruct
and return a winning sequence of moves by working backward through the solution us-
ing the hash table.

Several important invariants clarify the behavior of the algorithm:

• Every board that has been seen should have an entry in the hash table describing the
move that led to it.

• Every board in the to-be-explored queue should be recorded as having been seen.

• For every move m in the hash table—except the element representing the initial board—
there is already another movem0 in the hash table such that executing (m− > x,m− >

y) on m0− > key should yield m− > key.

• The final resulting move sequence should transform the initial board to the winning
board.

Many of these invariants can be formally accounted for using contracts, and designing
and implementing specification functions for them will help solidify your understanding of
the algorithm and help you write correct code.



15-122 Assignment 5 Page 8 of 8

Task 4 (12 pts, lightsout.c0) Implement the solver algorithm outlined above as the func-
tion solve. Be sure to include contracts for the function’s preconditions, postconditions, and
relevant invariants: part of your grade for this task will be based on the quality of your con-
tracts and the specification functions you implement to express them. Your solve function
should return NULL if given a board that has no solution, and you may assume that the given
board is not already solved. The function should return a valid move list if one exists.


