
15-122 Assignment 2 Page 1 of 8

15-122 : Principles of Imperative Computation

Summer 1 2012

Assignment 2

(Theory Part)

Due: Thursday, May 31, 2012 in class

Name:

Andrew ID:

Recitation:

The written portion of this week’s homework will give you some practice working with
searching algorithms and test your understanding of contracts. You can either type up your
solutions or write them neatly by hand, and you should submit your work in class on the
due date just before lecture or recitation begins. Please remember to staple your written
homework before submission.

Question Points Score

1 4

2 8

3 6

4 4

5 3

Total: 25

15-122 Assignment 2 Page 2 of 8

1. C0 Operators. Let x be an int in the C0 language. Express the following operations
in C0 using only one statement each. (Do not use an if statement here.) You should
think about using some of the bitwise operators: (&, |, ^, ~, <<, >>).

(a)(2) Rotate x left one bit. (The leftmost bit reenters x in the rightmost position.) Store
the result back in x.

Solution:

(b)(2) Rotate x right one bit. (The rightmost bit reenters x in the leftmost position.)
Store the result back in x.

Solution:

2. Reasoning with Invariants. Consider the following implementation of the linear
search algorithm that finds the last occurrence of x in array A:

int find(int x, int[] A, int n)

//@requires 0 <= n && n <= \length(A);

//@requires is_sorted(A, 0, n);

{

int i = n-1;

while (i >= 0 && A[i] >= x)

{

if (A[i] == x) return i;

i = i - 1;

}

return -1;

}

Note that the function is_sorted is slightly different from the one we have been using
in lecture—it takes a lower bound as well as an upper bound for the range of the array
that we care about.

15-122 Assignment 2 Page 3 of 8

(a)(2) Add loop invariants to the code and show that the they hold for this loop. Be sure
that the loop invariants precisely describe the computation in the loop.

Solution:

(b)(2) Add one or more ensures clause(s) to describe the intended postcondition in a
precise manner.

Solution:

(c)(4) Show that the loop invariant is strong enough by using the loop invariant to prove
that the postconditions hold at the end of the function (both if it ends by the return
statement in the loop or the return statement after the loop exits).

Solution:

15-122 Assignment 2 Page 4 of 8

3. Binary Search.

(a)(3) An array can have duplicate values. A programmer wrote the following variant of
binary search to find the first occurrence of x in a sorted array A of n integers so
that the asymptotic complexity is still O(logn):

int binsearch_smallest(int x, int[] A, int n)

//@requires 0 <= n && n <= \length(A);

//@requires is_sorted(A, 0, n);

/*@ensures (\result == -1 && !is_in(x, A, n))

|| (0 <= \result && \result < n && A[\result] == x

&& (\result == 0 || A[\result-1] < x));

@*/

{

int lower = 0;

int upper = n;

while (lower < upper)

//@loop_invariant 0 <= lower && lower <= upper && upper <= n;

//@loop_invariant lower == 0 || A[lower-1] < x;

//@loop_invariant upper == n || A[upper] >= x;

{

int mid = lower + (upper-lower)/2;

if (A[lower] == x) return lower;

if (A[mid] < x) lower = mid+1;

else upper = mid;

}

//@assert lower == upper;

return -1;

}

There is a bug in this implementation. Describe the bug and fix the code (and the
annotations if necessary) so that it works correctly.

Solution:

15-122 Assignment 2 Page 5 of 8

(b)(3) Consider the following variation of binary search algorithm. Instead of checking the
middle element of the sorted array A[], check the element at position n/3. Then
proceed in the same way as in binary search. If you are looking for x then

• if x = A[n/3] you have found it.

• if x < A[n/3] you search the first third of the array, namely at indexes < n/3.

• if x > A[n/3] you search the rest two thirds of the array at indexes > n/3.

Is this algorithm is asymptotically faster or slower than binary search given in class?
Explain your answer.

Solution:

15-122 Assignment 2 Page 6 of 8

4. Runtime Complexity. Consider the following function that sorts the integers in an
array. (You may assume the code is correct so most annotations are not shown.)

int sort(int[] A, int n)

//@requires 0 <= n && n <= \length(A);

{

int i = 1;

while (i < n)

{

int j = i;

while (j != 0 && A[j-1] > A[j])

{

swap(A, j-1, j); // function that swaps A[j-1] with A[j]

j = j - 1;

}

i = i + 1;

}

}

(a)(2) Let T (n) be the number of comparisons needed to sort an array n elements. Using
big-O notation describe the worst-case runtime complexity of sort().

Solution:

T (n) = O(

(b)(2) Using your answer from the previous part, prove that T (n) = O(f(n)) using the
formal definition of big O. That is, find c > 0 and n0 ≥ 0 such that for every
n ≥ n0, T (n) ≤ cf(n).

Solution:

15-122 Assignment 2 Page 7 of 8

5.(3) More on Contracts. This question is designed to test your knowledge of contracts, how
they are checked dynamically, and how they can be used to reason about the correctness
of your program. Your job is to identify the locations in a C0 function and a main function
that calls it where contracts are checked and where you can assume that contracts must
be true. Consider the mult function and a main function that calls it:

int mult(int x, int y)

//@requires x >= 0 && y >= 0;

//@ensures \result == x*y;

{

int k = x;

int n = y;

int res = 0;

while (n != 0)

//@loop_invariant x * y == k * n + res;

{

if ((k & 1) == 1) res = res + n;

k = k >> 1;

n = n << 1;

}

return res;

}

int main()

{

int a;

a = mult(3,4);

return a;

}

15-122 Assignment 2 Page 8 of 8

When you compile your C0 program with the -d flag, it adds runtime tests to your
program which are checked when it is executed. Based on the contracts for the mult

function above, write CHECK B at any point in the copy of the function below where a
boolean expression B is checked by a contract in the main and mult functions given that
they are compiled with the -d flag. Note: not all blank lines below should be filled in.

int mult(int x, int y) {

int k = x; int n = y;

int res = 0;

while (n != 0) {

if ((k & 1) == 1) res = res + n;

k = k >> 1;

n = n << 1;

}

return res;

}

int main() {

int a;

a = mult(3,4);

return a;

}

