
Lecture Notes on
Memory Layout

15-122: Principles of Imperative Computation
Frank Pfenning André Platzer

Lecture 11

1 Introduction

In order to understand how programs work, we can consider the func-
tions, their preconditions and postconditions, check whether loop bodies
preserve the loop invariants, and reason about why the implementation
achieves the postconditions without violating array bounds and without
attempting invalid pointer accesses. This is a very useful and powerful
style of understanding how a program works. It emphasizes the logical
and computational thinking aspects of programming.

Another way of understanding how a program works is more opera-
tional where we follow the dynamic behavior of the program and under-
stand what exactly each of its steps does. This is what today’s lecture is
about.

Both approaches of reasoning about programs, the logical and the op-
erational are equally important and often go together hand in hand very
well. In fact, in order to check whether a loop body preserves its loop in-
variant, we already need to understand the operational effect that the loop
body has on the data.

So how, exactly, does a program operate, and what exactly happens to
our code when we run it?

2 Data in Memory

Ultimately, “all” data resides in memory. In fact, part of the data may also
be kept in fast registers directly on the CPU. You will learn about registers

LECTURE NOTES

Memory Layout L11.2

in detail in 15-213 and can learn about their use in programming languages
in 15-411. For the purposes of today’s lecture, it is sufficient to pretend
all data would sit in memory and ignore registers for the time being. This
simplifies the principles without losing too much precision.

The data in memory is addressed by memory addresses that fit to the
addressing of the CPU in your computer. We will just pretend 32bit ad-
dresses, because those are shorter to write down. All addresses are posi-
tive, so the lowest address is 0x00000000 and the highest address 232 − 1 =
0xFFFFFFFF. All data (with the caveat about registers) sits in memory at
some address. One important question about all data in memory is how
big it is, so that the compiler can make sure program data is stored without
accidental overlapping regions.

The basic memory layout looks as follows:

OS AREA

============

System stack (local variables and function calls)

============

unused

============

System heap (data allocated here... alloc or alloc_array)

============

.text (read only) (program instructions sit in memory)

============

OS AREA

One consequence of this memory layout is that the stack grows towards
the heap, and the heap usually grows towards the stack. The reason that
the stack is called a stack is because it operates somewhat like the principle
of the stack data structure that from Lecture 10. Your program can put new
data on the top of the stack. It can also pop elements of the stack if this data
is no longer necessary. Unlike the stack abstraction from Lecture 10 it may
appear as if your program internally also modifies data that is on the stack,
even if it is not quite at the top of it. However, the only data on the stack
that the program modifies is in the top range of the stack (perhaps the top
512 bytes or so, depending on the function that runs), even if it is not just
the top word of the stack.

Programs cannot access memory cells that belong to the operating sys-
tem. If they try, programs get an “exception” like a segmentation fault.
Where can that happen in C0? C0 takes great care to ensure that it never

LECTURE NOTES

http://www.cs.cmu.edu/~213/
http://symbolaris.com/course/compiler11.html
http://www.andrew.cmu.edu/course/15-122/lectures/10-stacks.pdf
http://www.andrew.cmu.edu/course/15-122/lectures/10-stacks.pdf

Memory Layout L11.3

gives you any pointers to uninitialized or random or garbage data in mem-
ory, except, of course, the NULL pointer. NULL is a special pointer to the mem-
ory address 0, which belongs to the operating system. Any access by a
user-land program by dereferencing a NULL pointer causes a segfault.

If, however, you are writing a program that will be running as part of
the operating system, your program has no protection against NULL pointer
dereferencing anymore, because memory address 0 is a valid address for
the operating system, even if not for regular programs. When writing code
for operating systems, you, thus, need to have mastered the art of protect-
ing against illegal NULL dereferences. This is exactly one of the things that
contracts, loop invariants, and assertions prepare you for.

3 References, Pointers, and Structs

In order to explain how members of a struct are accessed, we digress briefly
to introduce pointers, although we will use them in only a very limited form
in this lecture. C0 distinguishes between small types and large types. Small
types have values that can be stored in variables and passed to and from
functions. Large types can only be stored in memory. In order to access
them we pass references or pointers to them. Alternatively, we can think of
passing around their address in memory, rather than the values themselves.
Once we pass around an address of data in memory, the program that re-
ceives that address can easily read the memory contents at that address and
possibly even change it.

Which types are small and large so far? It seems pretty clear that int,
bool, and char are explicitly designed to be small. The natural size of a
value of type int on recent architectures is 32 or 64, although in previous
generations of processors it was 8 or 16. The C standard does not tell us the
size of an int. They could be 16bits or 32bits or 64bits. In each case, we get
modular arithmetic overflow at different numbers. In C0, int are fixed as
32bit (signed) integers. In C0 we fix the size of int to be 32. There are only
two booleans, so we might expect them to be 1 bit. The processor architec-
ture, however, has a natural word size which is handled most efficiently,
so they may actually be implemented to take more space. Similarly, ASCII
character values of type char should take 7 or 8 bits, although in reality an
implementation might allocate more space for them.

The type of arrays is an interesting case. We might expect t[] to be a
large type, since each array takes a fixed, but unbounded amount of space.
But we have been passing them as arguments to functions and assigning

LECTURE NOTES

Memory Layout L11.4

them to variables without any problems. The reason is that a value of type
t[] is actually a reference to an array that is stored in memory. Such a ref-
erence fits within the word size of the machine, since addresses are a basic
type that the machine can manipulate. On most recent architectures, an ad-
dress will take either 32 or 64 bits, depending on the configuration of the
compiler and machine. The current environment in use for this class uses
64 bits, although there is no effective way to tell the difference from within
a C0 program.

In summary, arrays with elements of type t and length n are allocated in
memory, with alloc_array(t,n). Such an allocation returns a reference to
the array. In memory, this array will need space (at least) |t| ∗n, where |t| is
the size of the element type t. An array alloc_array(int,10) would need
at least 40 bytes in memory, for example. An array alloc_array(char,10)

could be stored with 10 bytes. C0 uses a slightly larger memory portion
to store the length of the array in order to be enable dynamic checking of
contracts and assertions that refer to \length(A).

When two variables of type t[] are the same reference we say that they
alias. As a programmer, it is important to be aware of this because assign-
ment to an array variable does not copy the contents of the array, but only
assigns references. For example, after the operations

int[] A = alloc_array(int,5);

int[] B = alloc_array(int,7);

A[2] = 37;

B = A;

B[2] = 11;

A and B alias, and we have A[2] == 11 and also \length(B) == 5. In fact,
the allocation of B is redundant, and we could just as well have written

int[] A = alloc_array(int,5);

int[] B;

A[2] = 37;

B = A;

B[2] = 11;

Besides arrays, strings are also manipulated by reference and therefore
string is a small type.

In contrast, structs are large types, because they (usually) do not fit into
a single memory cell (or register). This means that they are allocated in the
heap and can not be stored in variables or passed to functions. Instead of

LECTURE NOTES

Memory Layout L11.5

references, as for arrays, we use explicit pointers when passing them to or
from functions or assigning them to variables. In fact, because struct s is
a large type it is an error to try to pass it to a function or directly declare a
variable of such a type.

In general, we write t* for a pointer to a value of type t in memory.
In this lecture we only use it in the form struct s*, that is, a pointer to a
struct in memory. Structs (and other values) are allocated in memory using
the form alloc(t) for a type t. This allocation returns a pointer to the new
memory location, and therefore has type t*.

If we have a pointer p of type struct s* we refer to the field f of the
struct using the notation p->f. To write to memory we use it on the left-
hand side of an assignment, to read from memory with use it as an expres-
sion.

For example, consider

struct list {

int data;

struct list* next;

};

Then a variable struct list* l; would need the size of 1 pointer (e.g.,
32bit or 64bit) to store. An operation

struct list* l = alloc(struct list);

would allocate a piece of memory on the heap where the struct list can
be stored. That piece of memory at least has the size 8 bytes (on a 32bit
architecture) or 12 bytes (on a 64bit architecture), because we need 32bit
to store the int data information and another 32bit or 64bit to store the
address that next points to. In 15-411, you will learn that the actual size
of struct l may actually be slightly larger to make sure all information is
aligned properly in memory, in a way that makes the access for the CPU
maximally efficient, which is called padding.

4 Variables on the Stack, Allocated Data on the Heap

As an example to understand what really happens operationally, we con-
sider a program that builds a linked list with the values from 1 to n from
start to end. So the goal is to build a list in which we will find the values
from 1 to n when we traverse it from its start to its end (NULL). The con-
venient way to do that is to let the function build a list from the end to the

LECTURE NOTES

Memory Layout L11.6

start. It obviously needs to fill in the numbers in reverse order, which is
what the reverse order for loop accomplishes, in which i decreases after
each iteration.

struct list* upto(int n)

//@requires n >= 0;

//@ensures list_length(\result) == n;

{

struct list* r = NULL;

for (int i = n; i >= 1; i--)

//@loop_invariant 0 <= i && i <= n;

{

struct list* l = alloc(struct list);

l->next = r;

l->data = i;

r = l;

}

return r;

}

First note that we initialize r to be NULL, because every variable must
be initialized. If you allocate an array using alloc_array(t,n), its ele-
ments however are going to be initialized, but single variables are not.
Now one may wonder why the alloc(struct list) operation returns a
pointer to a struct list, instead of the struct itself? From what we
have learned about the memory layout, we can see that the reason is that
structs are too big to fit into single memory cells (and also too big to fit
into a register). Structs are large types, but functions can only return small
types, so alloc returns a pointer to struct list instead, which is a small
type and fits conveniently into a memory cell or a register.

When running the upto function, its local variables need to be put in
memory at some place (remember that we ignore registers to simplify mat-
ters). The arguments to the function also need to be passed to it and will,
thus, be kept on the stack (ignoring registers).

For example, for a call of upto(2) the stack layout for the (essential part
of the) stack frame of upto will look as follows:

stack:

n 2

r 0x00 (represents NULL) (set to 0xDE after node is initialized)

LECTURE NOTES

Memory Layout L11.7

i 2

l 0xDE (example of an address on the heap)

Upon allocation via l = alloc(struct list), the allocation will allocate a
region on the heap that is large enough to fit data of type struct list and
will return a pointer to it, i.e., the address of that newly allocated region in
memory. In this example, we assume the address is 0xDE. The information
contained in the struct that l points to is stored on the heap, relative to this
base address:

heap:

l->data is stored at 0xDE (value set to 2)

l->next is stored at 0xE2 (value set to 0x00)

The alloc function already initializes all elements of the struct to default
values. The default value for such int values in a struct or array are 0. For
pointers they are NULL, which coincides with the numerical representation
of NULL, which is the address 0.

When the loop repeats, the same record on the stack stores the values of
the variables. In particular, the old values get overwritten by the new ones.

stack:

n 2

r 0xDE (value set to 0x13 after node initialized)

i 2

l 0x13 (example)

heap:

l->data is stored at 0x13 (value set to 1)

l->next is stored at 0x17 (value set to 0xDE)

In our pictures of pointer structures like linked lists, when we draw an
arrow, it means that cell has an address that references the thing the arrow
is pointing to. That is, for example, what we meant by the pointy arrows in

LECTURE NOTES

Memory Layout L11.8

the following diagram of a list structure from Lecture 10:

1  3 2  4 

start 

data  next 

5 6 

5 Stack

When you call a function, the system stack has a stack frame that holds space
for function arguments and local variables. Every time a function is called
a new frame is created and pushed on the system stack. Now a good ques-
tion is why it is not sufficient to just work with one single stack frame per
function? Before you read on, try to figure out this answer for yourself.

LECTURE NOTES

http://www.andrew.cmu.edu/course/15-122/lectures/10-stacks.pdf

Memory Layout L11.9

The reason why a single function may need more than one frame on the
stack is because that function could be called recursively. Then, if a func-
tion would simply overwrite the data in its stack frame, it would interfere
with the values of the corresponding arguments and local variables in other
instances of the same function, that still expect to find their data intact.

Recall the recursive factorial function:

int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

Suppose we call fact(4), then we end up with the following stack (re-
call that the stack grows upside-down towards the heap):

stack:

n 4

n 3

n 2

n 1

n 0

When a function returns, the top frame is popped off the system stack
and the result is used in the function call belonging to the previous frame.

6 Excursion to Concurrency

Similarly, programs need to be careful where they pass their pointers to. If
your program is the only one who has pointers to its own stack and heap,
then your program is in control of what gets changed in that region of the
memory. If, however, other programs (or other threads) also have pointers
to the same memory regions, they could write data into the same memory
as your program, possibly overwriting the information. This concurrency
leads to very difficult situations. Recall

struct list {

int data;

LECTURE NOTES

Memory Layout L11.10

struct list* next;

};

Suppose your program P1 has a pointer list p; pointing to memory ad-
dress 0xAB0000C0. Further suppose this pointer got communicated or leaked
to another program P2 that has a pointer list q; with the same address
0xAB0000C0. Now your program P1 may write the total number of stu-
dents in this class as an integer into p->data by executing the first line of
the program P1

p->data = 241;

long_computation;

if (p->data >= 0) {

//@assert false;

// this should not happen

}

But now suppose that, while long_computation is still running and before
our program P1 gets a chance to read this data again in the if statement, the
other program P2 suddenly overwrites the same information by running

q->data = -10;

Then our program P1 may get very confused when reading from p->data

again:

if (p->data >= 0) {

// this assertion may fail if P2 concurrently modified data

//@assert false;

}

This is the reason why programs that run concurrently with multiple
programs running at the same time are very difficult. The model of concur-
rency we use here is that two programs running at the same time can just
have their instructions executed in an arbitrary interleaving. So for each
program, we know that its next instruction will only run after the previous
instruction has completed, but we do not know which of the instructions
in two separate programs runs first. It is possible that one program even
completes before the other starts, just unlikely for long running computa-
tions.

Similarly, if a different program had a pointer with the same memory
address, program data could change in surprising ways. Fortunately, the

LECTURE NOTES

Memory Layout L11.11

C0 compiler is taking great care to ensure that C0 programs only ever get
to know memory addresses via alloc and alloc_array that are “owned”
by that C0 program and, basically, no other program knows about them.
Under those circumstances, the C0 program can rely on never reading dif-
ferent data from memory that what it had put in there in the first place.
Aliasing issues of pointers may, of course, still cause similarly surprising
effect if the programmer is not careful about reasoning whether two point-
ers could have the same address.

struct duplexlist {

int data1;

int data2;

struct duplexlist* next;

};

void swap(struct duplexlist* p, struct duplexlist* q) {

int d1 = p->data1;

p->data1 = q->data2;

int d2 = p->data2;

p->data2 = q->data1;

q->data1 = d2;

q->data2 = d1;

}

LECTURE NOTES

Memory Layout L11.12

Exercises

Exercise 1 Give an example of implementations for two functions
int f(struct list* p); and int g(struct list* q); that use pointers.
Give a scenario where they f(p)will return different answers depending on whether
or not g(q) runs concurrently, i.e., both execute at the same time.

Exercise 2 Give an example of an implementation of a function
int f(t* p, t* q); that will return different answers depending on whether
the pointers p and q have been properly allocated, or whether one pointer points
into the middle of a data structure on the heap (which C0 does not allow but C
would). Unlike in Exercise 1, do not use concurrency in your solution.

Exercise 3 Give an example of an implementation of a function
int f(struct list* p, struct list* q); that will return different answers
depending on whether or not there is an aliasing situation in the data reachable
from p and q. Unlike in Exercise 1, do not use concurrency in your solution. Un-
like in Exercise 2, only use properly allocated C0 data, and do not use pointers that
point into the middle of a data structure on the heap.

LECTURE NOTES

	Introduction
	Data in Memory
	References, Pointers, and Structs
	Variables on the Stack, Allocated Data on the Heap
	Stack
	Excursion to Concurrency

