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1 Introduction

In this lecture we will start the transition from C0 to C. In some ways, the
lecture is therefore about knowledge rather than principles. The underly-
ing issue that we are trying to solve in this lecture is nevertheless a deep
one: how can a language support generic implementations of data struc-
tures that accomodate data elements of different types. The name polymor-
phism derives from the fact that data take on different forms for different
uses of the same data structure.

A simple example is the data structure of stacks. In our C0 implemen-
tation, the definition of the stack interface used an unspecified type elem of
elements.

typedef struct stack* stack;
bool stack_empty(stack S); /* O(1) */
stack stack_new(); /* O(1) */
void push(stack S, elem e); /* O(1) */
elem pop(stack S); /* O(1) */

The type elem must be defined before this file is compiled. In our testing
code we used

typedef int elem;

to test stacks of integers. So it was already true that the implementation
was generic to some extent, but this genericity could not be exploited. For
example, if we wanted a second client using stacks of strings, we would
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have to cut-and-paste our stack code and rename the functions in its inter-
face to avoid conflicts. In this lecture we will see how we can make the
implementation generic to allow reuse at different types.

2 A First Look at C

Syntactically, C and C0 are very close. Philosophically, they diverge rather
drastically. Underlying C0 are the principles of memory safety and type
safety. A program is memory safe if it only reads from memory that has
been properly allocated and initialized, and only writes to memory that
has been properly allocated. A program is type safe if all data it manipu-
lates have their declared types. In C0, all programs type safe and memory
safe. The compiler guarantees this through a combination of static (that
is, compile-time) and dynamic (that is, run-time) checks. An example of
a static check is the error issued by the compiler when trying to assign an
integer to a variable declared to hold a pointer, such as

int* p = 37;

An example of a dynamic check is an array out-of-bounds error, which
would try to access memory that has not been allocated by the program.
Advanced modern languages such as Java, ML, or Haskell are both type
safe and memory safe.

In contrast, C is neither type safe nor memory safe. This means that the
behavior of many operations in C is undefined. Unfortunately, undefined
behavior in C may yield any result or have any effect, which means that
the outcome of many programs is unpredictable. In many cases, even pro-
grams that are patently absurd will yield a consistent answer on a given
machine with a given compiler, or perhaps even across different machines
and different compilers. No amount of testing will catch the fact that such
programs have bugs, but they may break when, say, the compiler is up-
graded or details of the runtime system changes. Taken together, these
design decisions make it very difficult to write correct programs in C. This
fact is in evidence every day, when we download so-called security critical
updates to operating systems, browsers, and other software. In many cases,
the security critical flaws arise because an attacker can exploit behavior that
is undefined, but predictable across some spectrum of implementations, in
order to cause your machine to execute some arbitrary malicious code. You
will learn in 15-213 Computer Systems exactly how such attacks work.
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These difficulties are compounded by the fact that there are other parts
of the C standard that are implementation defined. For example, the size of
values of type int is explicitly not specified by the C standard, but each im-
plementation must of course provide a size. This makes it very difficult to
write portable programs. Even on one machine, the behavior of a program
might differ from compiler to compiler.

Despite all these problems, almost 40 years after its inception, C is still
a significant language. For one, it is the origin of the object-oriented lan-
guages C++ and strongly influenced Java and C#. For another, much sys-
tems code such as operating systems, file systems, garbage collectors, or
networking code are still written in C. Designing type-safe alternative lan-
guages for systems code is still an active area of research, including the
Static OS project at Carnegie Mellon University.

3 Lack of Memory Safety

When compared to C0, the most shocking difference is that C does not dis-
tinguish arrays from pointers. As a consequence, array accesses are not
checked, and out-of-bounds memory references (whose result is formally
undefined) may lead to unpredictable results. For example, the code frag-
ment

int main() {
int* A = malloc(sizeof(int));
A[0] = 0; /* ok - A[0] is like *A */
A[1] = 1; /* error - not allocated */
A[317] = 29; /* error - not allocated */
A[-1] = 32; /* error - not allocated */
printf("A[-1] = %d\n", A[-1]);
return 0;

}

will not raise any compile time error or even warnings, even under the
strictest settings. Here, the call to malloc allocates enough space for a single
integer in memory. In this class, we are using gcc with the following flags:

gcc -Wall -Wextra -std=c99 -pedantic -Werror

which generates all warnings, pedantically applies the C99 standard, and
turns all warnings into errors. The code above executes ok, and in fact
prints 32, despite four blatant errors in the code. To discover whether such
errors may have occurred at runtime, we can use the valgrind tool.
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% valgrind ./a.out
...
==nnnn== ERROR SUMMARY: 4 errors from 4 contexts (suppressed: 0 from 0)

which produces useful error messages (elided above) and indeed, flags 4
error in code whose observable behavior was bug-free.

valgrind slows down execution, but if at all feasible you should test all
your C code in the manner to uncover memory problems. For best error
messages, you should pass the -g flag to gcc which preserves some corre-
lation between binary and source code.

You can also guard memory accesses with approriate assert statements
that abort the program when attempting out-of-bounds accesses.

Conflating pointers and arrays provides a hint on how to convert C0
programs to C. We need to convert t[] which indicates a C0 array with
elements of type t to t* to indicate a pointer instead. In addition, the
alloc and alloc_array calls need to be changed, or defined by appro-
priate macros. Of course, there are many cases where C0 programs have a
well-defined answer, where the corresponding C program would not. The
most significant of these is integer overflow, the outcome of which is not
defined in C while modular arithmetic is specified for C0.

4 Undefined Behavior in C

The most important undefined behaviors in C are:

Out-of-bounds array access: see the previous section.

Null pointer dereference: dereferencing the null pointer has undefined re-
sults. Because under most configuration this will lead to a “segmen-
tation fault” (abort with signal SIGSEGV), it may be overlooked that
this is not defined. In particular, if your code runs in kernel mode, as
part of the operating system, it may not yield an exception.

Arithmetic overflow: when addition, subtraction, multiplication, or divi-
sion overflow the precision of the integer type (usually int) then the
result is undefined. This includes division by 0, but also simple over-
flow of addition.

Cast: when data values of certain types are cast to other types the result is
sometimes undefined. Casts are discussed further in the next section.
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5 Void Pointers

In C, a special type void* denotes a pointer to a value of unknown type.
We can use this to make data structures generic by assigning the type void*
to the stored elements. For example, an interface to generic stacks might be
specified as

typedef struct stack* stack;
bool stack_empty(stack S); /* O(1) */
stack stack_new(); /* O(1) */
void push(stack S, void* e); /* O(1) */
void* pop(stack S); /* O(1) */

Notice the use of void* for the first argument to push and for the return
type of pop.

How do we create a value of type void*? That actually is pretty easy,
because we can just forget that we know a value has type t* for any type
t and treat it as an element of type void*. This “forgetting” of informa-
tion can be done implicitly, and does not require any special syntax. For
example, with the declarations above, we can write

stack S = stack_new();
int* p = malloc(sizeof(int));
*p = 3;
push(p, S);

to push a pointer p onto the stack. The fact that p has type int* lets us use
it as if it had type void*.

Complications arise when we are trying to use a pointer of type void*.
For example, the following would be an error, after the above statements:

int y = *pop(S);

The problem is that the return type of pop is void*, dereferencing this
would yield a value of type void, which does not exist (or, at least, does
not match the type int declared for y). This last declaration is therefore not
type-correct and has to be rejected by the compiler. However, we as clients
of the stack data structure know that we have stored pointers to integers.
Therefore, we are entitled to cast the result of type void* to a pointer of
type int*. The syntax for casting an expression e to a type t is (t)e. So,
above we could write:

int y = *(int*)pop(S);
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As programmers, we are almost entirely on our own here: only our
knowledge of what we pushed onto the stack makes this safe and correct.
The compiler cannot check this at compile time, and the runtime system
cannot check it at runtime. The latter limitation arises from the fact that
in C we cannot inspect data at runtime and infer their types. This is unlike
type-safe object-oriented languages like Java where so-called down casts can
be checked at runtime because every object is tagged with its class. In that
world, our type void* would be like the class Object.

If we do this incorrectly in C the result generally speaking is undefined.
As an example, consider the following code fragment.

char* s = "15122";
push(s, S);
int y = 3+*(int*)pop(S);

The result is undefined, although there is a good chance it will execute and
bind y to 842085684. To understand why, we first note that, in C, strings
are represented as character arrays terminated by the NUL character \0. An
element of type char is usually 1 byte (although that is certainly not guar-
anteed), which means the cast followed by the dereference interprets the
ASCII code of the first 4 characters of "15122" as an integer. Now you only
have to look up the ASCII code of the first four characters and know (a) that
character arrays are just stored in consecutive bytes, and (b) that numbers
are stored with their least significant byte at the lowest address.1

In summary, on the client side of a generic data type implementation,
we have the following rules.

• When the data structure interface demands an argument of type void*,
supply data of type t*, where t is the type of the data we would like
to store in the data structure. C will implicitly consider a value of
type t* as if it has type void*, forgetting some information.

• When the data structure interface returns a value of type void*, ex-
plicitly cast is to be of type t*, where t is as in the first rule, the type
of the data previously stored.

Sometimes, C will insert an automatic cast, but as a matter of style it is
clearer and easier to spot if such casts are explicit. An example where they
are often omitted is in the next section.

1A so-called little-endian representation. Compare with big-endian representations where
the most significant byte is at the lowest address.

LECTURE NOTES MARCH 29, 2011



Polymorphism L20.7

6 Memory Allocation

Two examples of system-provided functions which return a generic pointer
are malloc and calloc. They have prototypes

void* malloc(size_t size);
void* calloc(size_t nobj, size_t size);

The type size_t is an implementation-defined type. Typically, this would
be unsigned int which represents words of the same number of bits as
int, except that all numbers are interpreted as zero or positive. For 32 bit
integers, this covers the range from 0 to 232 − 1, whereas int covers the
range from −2−31 to 231 − 1. If arguments are actually of type int and
positive, then they are implicitly cast as unsigned int, so in most cases we
do not have to know the precise definition of size_t.

malloc(sizeof(t)) allocates enough memory to hold a value of type
t. In C0, we would have written alloc(t) instead. The difference is that
alloc(t) has type t*, while malloc(sizeof(t)) has type void*. We there-
fore need to explicitly cast it to the appropriate type. For example,

int* p = (int*)malloc(sizeof(int));

Actually, in this particular case, as the initializer in a declaration or on the
right-hand size of an assignment, C can determine the type of the left-hand
side and implicitly cast void* to t*. This may seem obvious here, but in
some cases it can hide subtle errors when the left-hand side of the assign-
ment is complex. Also, malloc does not guarantee that the memory it re-
turns has been initialized.

calloc(n, sizeof(t)) allocates enough memory for n objects of type
t. Unlike malloc, it also guarantees that all memory cells are initialized
with 0. For many types, this yields a default element, such as false for
booleans, 0 for ints, ’\0’ for char, or NULL for pointers.

As a rule of thumb, unless malloc or calloc appear as initializers, one
should coerce the result to the appropriate pointer type. A reason this is
particularly important is because an incorrect allocation is generally hard to
diagnose. Sometimes, too much space is allocated (which does not manifest
itself as a bug, even with valgrind), sometimes too little (which can escape
detection when memory references are not checked for validity).

Both malloc and calloc may fail when there is not enough memory
available. In that case, they just return NULL. This means any code call-
ing these two functions should check that the return value is not null be-
fore proceeding. Instead, we have defined functions xmalloc and xcalloc
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which are just like malloc and calloc, respectively, but abort computation
in case the operaton fails. They thereby guarantee to return a pointer that is
not null, if they return at all. These functions are in the file xalloc.c; their
declarations are in xalloc.h (see Section 9 for an explanation of header
files).

7 Genericity on the Implementation Side

In the implementation of generic data types such as stacks, the treatment
of the generic elements of type void* is quite simple. This is because the
data structure carries values of this type, but doesn’t examine or manip-
ulate them. Some more advanced data structures do; in these cases more
advanced techniques are necessary. These will be introduced in the next
lecture.

Recall that we used linked lists to implement stacks. For generic stacks,
the data in linked lists have type void*.

typedef struct list* list;
struct list {
void* data; /* generic data */
list next;

};

struct stack {
list top;
list bottom;

};

The function to push an element onto the stack has to store the data into a
struct it allocates. Both the argument and the struct field will have type
void*, so the data movement is well-typed without knowing what this
pointer actually refers to.

void push(stack S, void* e)
//@requires is_stack(S);
//@ensures is_stack(S) && !stack_empty(S);
{
REQUIRES(is_stack(S));
list first = xmalloc(sizeof(struct list));
first->data = e;
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first->next = S->top;
S->top = first;
ENSURES(is_stack(S) && !stack_empty(S));

}

We have left the C0 @requires and @ensures annotations in the code. The
C compiler will see these as comments, since they are preceded by //, and
this comment syntax is permitted by the C99 standard. We have also indi-
cated how this translates into the use of two macros we have defined for
C, REQUIRES and ENSURES. These are in all capitals because, by convention,
macro names are written in all capitals.

8 Macros

Macros are another extension of C that we left out from C0. Macros are ex-
panded by a preprocessor and the result is fed to the “regular” C compiler.
When we do not want REQUIRES to be checked (which is the default, just as
for @requires), there is a macro definition

#define REQUIRES(COND) ((void)0)

which can be found in the file contracts.h. The right-hand side of this
definition, ((void)0) is the number zero, cast to have type void which
means it cannot be used as an argument to a function or operator; its result
must be ignored. When the code is compiled with

gcc -DDEBUG ...

then it is defined instead as a regular assert:

#define REQUIRES(COND) assert(COND)

In this case, any use of REQUIRES(e) is expanded into assert(e) before the
result is compiled into a runtime test.

The three macros, all of which behave identically are

REQUIRES(e);
ENSURES(e);
ASSERT(e);

although they are intended for different purposes, mirroring the @requires,
@ensures, and @assert annotations of C0. @loop_invariant is missing,
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since there appears to be no good syntax to support loop invariants di-
rectly; we recommend you check them right after the exit test or at the end
of the loop using the ASSERT macro.

Another common use for macros is to define compile-time constants.
For example, our implementation of ROBBDs has a line at the beginning

#define BDD_LIMIT (1<<20)

which says that the number of nodes in a BDD can be at most 220 = 1M ,
which actually is not very much for BDDs. If it is insufficient, this constant
can be changed at the beginning of the file and the code recompiled with a
bigger limit. In general, it is considered good style to isolate “magic” num-
bers in macros at the beginning of a file, for easy reference. The C imple-
mentation itself uses them as well, for example, limits.h defines INT_MAX
as the maximal (signed) integer, and INT_MIN and the minimal signed inte-
ger, and similarly for UINT_MAX for unsigned integers.

9 Header Files and Conditional Compilation

An important convention in C is the use of header files to specify interfaces.
Header files have the extension .h and contain type declarations and defi-
nitions as well as function prototypes and macros, but never code. Header
files are not listed on the command line when the compiler is invoked, but
included in C source files (with the .c extension) using the #include pre-
processor directive. The typical use is to #include2 the header file both in
the implementation of a data structure and all of its clients. In this way, we
know both match the same interface.

This applies to standard libraries as well as user-written libraries. For
example, the client of the stack implementation we have been discussing in
this lecture (file stacks-test.c) starts with

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "xalloc.h"
#include "contracts.h"
#include "stacks.h"

2when we say “include” in the rest of this lecture, we mean #include
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The form #include <filename.h> includes file filename.h which must
be one of the system libraries provided by the suite of compilation tools
(gcc, in our case). The second form #include "filename.h" looks for
filename.h in the current source directory, so this is reserved for user
files. The names of the standard libraries and the types and functions they
provide can be found in the standard reference book The C Programming
Language, 2nd edition by Brian Kernighan and Dennis Ritchie or in various
places on the Internet.3

Let’s focus on stacks.h, which contains the interface to stacks and has
the following contents:

#include <stdbool.h>

#ifndef _STACKS_H_
#define _STACKS_H_

typedef struct stack* stack;
bool stack_empty(stack S); /* O(1) */
stack stack_new(); /* O(1) */
void push(stack S, void* e); /* O(1) */
void* pop(stack S); /* O(1) */
void stack_free(stack S); /* O(1), S must be empty! */

#endif

It defines the type stack as a pointer to a struct stack, whose imple-
mentation remains hidden. It also declares various functions, the last of
which (stack_free) we have not yet discussed. It includes the standard
library stdbool.h which defines the type bool as well as constants true
and false. C actually does not distinguish between booleans and integers,
treating the integer 0 as false and any non-zero integer as true. It is good
programming style to use bool, true, and false as we have done in C0
whenever the values are indeed booleans. Many C programs write

while (1) { ... };

for an infinite loop, while I would strongly suggest

while (true) { ... };

3for example, http://www.acm.uiuc.edu/webmonkeys/book/c guide/
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instead, if an infinite loop is indeed necessary.
We also see a certain idiom

#ifndef _STACKS_H_
#define _STACKS_H_
...
#endif

which is interpreted by the preprocessor, like other directives starting with
#. This is a header guard, which prevents the header from being processed
multiple times. The first time the header file is processed, the preprocessor
variable _STACKS_H_ will not be defined, so the test #ifndef (if not defined)
will succeed. The next directive defines the variable _STACKS_H_ (as the
empty string, but that is irrelevant) and then processes the following dec-
larations up to the matching #endif, usually at the end of the file.

Now if this file were included a second time, which happens frequently
because standard libraries, for example, are included in many different
source files that are compiled together, then the variable _STACKS_H_ would
be defined, the test would fail, and the body of the file ignored.

Header guards are an example of conditional compilation which is often
used in systems files in order to make header files and their implementation
portable. Another idiomatic use of conditional compilation is

#ifdef DEBUG
...debugging statements...
#endif

where the variable DEBUG is usually set on the gcc command line with

gcc -DDEBUG ...

Guarding debugging statements in this way generalizes the simple asser-
tion macros provided in contracts.h. In particular, you can declare vari-
ables that exist in debug mode only in order to implement \old(e).

10 Freeing Memory

Unlike C0, C does not automatically manage memory. As a result, pro-
grams have to free the memory they allocate explicitly; otherwise, long-
running programs or memory-intensive programs are likely to run out of
space. For that, the C standard library provides the function free, declared
with
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void free(void* p);

The restrictions as to its proper use are

1. It is only called on pointers that were returned from malloc or calloc.4

2. After memory has been freed, it is not longer referenced by the pro-
gram in any way. This includes calling free again on a pointer refer-
encing the same memory, which is prohibited.

If these rules are violated, the result of the operations is undefined. The
valgrind tool will catch dynamically occurring violations of these rules,
but it cannot check statically if your code will respect these rules when
executed.

In this example, we add a simple function to the interface that can free
a stack if it is empty.

void stack_free(stack S)
//@requires is_stack(S) && stack_empty(S);
{ REQUIRES(is_stack(S) && stack_empty(S));
assert(stack_empty(S));
free(S->top); /* == S->bottom */
free(S);

}

In the code in our testing function, we have to call this function after all
elements have been popped off the stack.

int main () {
stack S = stack_new();
int* x = (int*)malloc(sizeof(int));
*x = 1; /* x is heap-allocated */
push(x, S);
char* s = "24247"; /* s is a constant string */
push(s, S); /* mixed-type stack; DON’T DO THIS */
assert((char*)pop(S) == s); /* EVER! */
assert(*(int*)pop(S) == 1);
printf("All tests passed!\n");
free(x); /* free x */
assert(stack_empty(S));
stack_free(S); /* stack is empty; free */

4or realloc, which we have not discussed
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return 0;
}

Note that we could not free s, because the constant string "24247" is a con-
stant string, rather than one that has been allocated with malloc or calloc.
Also, we should never free elements allocated elsewhere, but use the ap-
propriate function provided in the interface to free the memory associated
with the data structure. Freeing a data structure is something the client it-
self cannot do reliably, because it would need to be privy to the internals of
its implementation.

In the next lecture we will learn more how to manage memory.
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