
15-122: Principles of Imperative Computation

Course Syllabus
Jamie Morgenstern

May 22, 2012

This course is intended for students with a basic understanding of pro-
gramming (variables, expressions, loops, arrays, functions). It teaches im-
perative programming and methods for ensuring the correctness of pro-
grams. Students will learn the process and concepts needed to go from
high-level descriptions of algorithms to correct imperative implementa-
tions, with specific application to basic data structures and algorithms. Much
of the course will be conducted in a subset of C amenable to verification,
with a transition to full C near the end. 21-127 Concepts of Mathematics is a
co-requisite (must be taken before or in the same semester). This course is a
pre-requisite for 15-213 Computer Systems and 15-210 Parallel and Sequential
Data Structures and Algorithms.

1 Learning Outcomes

We broadly categorize the learning outcomes into computational thinking,
programming skills and data structures and algorithms.

Computational Thinking

In the area of computational thinking, students will be able to

• Understand abstractions and interfaces.

• Relate specifications to implementations.

• Express pre- and post-conditions for functions and loop invariants.

• Use data structure invariants.

• Reason rigorously about code, both logically and operationally.

SYLLABUS MAY 22, 2012



15-122 Principles of Imperative Computation 2

• Analyze asymptotic complexity and practical efficiency.

• View programs as data.

Programming Skills

In the area of programming skills, students will be able to

• Understand the static and dynamic semantics of their programs.

• Develop, test, rewrite, and refine their code.

• Work with specifications and invariants.

• Use and design small API’s.

• Use and implement mutable data structures.

• Render high-level algorithms into correct imperative code.

• Write C programs in a Unix-based environment.

Data Structures and Algorithms

In the area of data structures and algorithms, students will be able to

• Perform asymptotic analysis on sequential computation, including
simple amortized analysis and recognition of common complexity
classes (O(n), O(n ∗ log(n)), O(n2), O(2n)).

• Apply the divide-and-conquer strategy in algorithm design.

• Understand properties of simple self-adjusting data structures.

• Effectively employ a number of basic algorithms and data structures,
including binary search, subquadratic sorting, stacks and queues, hash
tables, priority queues, balanced binary search trees, tries, binary de-
cision diagrams, simple graph algorithms.

SYLLABUS MAY 22, 2012



15-122 Principles of Imperative Computation 3

2 Programming Language

In weeks 1–11 the course uses C0, a small safe subset of C augmented with
a layer to express contracts. This language has been specifically designed to
support the student learning objectives in this course. In particular it pro-
vides garbage collection (freeing students from dealing with low-level de-
tails of explicit memory management), fixed range modular integer arith-
metic (avoiding complexities of floating point arithmetic and multiple data
sizes), an unambiguous language definition (guarding against relying on
undefined behavior), and contracts (making code expectations explicit and
localize reasoning).

In weeks 11–15 the course transitions to C, in preparation for subse-
quent systems courses. Emphasis is on tranferring positive habits devel-
oped in the use of C0, and on practical advice for avoiding the pitfalls and
understanding the idiosyncrasies of C. We use the valgrind tool for proper
memory management.

3 Course Materials

There is at present no textbook for this course, but detailed lecture notes as
well as a programming language reference. Course materials can be found
at:

• Fall 2010: http://www.cs.cmu.edu/~fp/courses/15122-f10

• Spring 2011: http://www.cs.cmu.edu/~fp/courses/15122-s11

• Current: http://www.andrew.cmu.edu/course/15-122

4 Student Evaluation

Students will be evaluated based on the following components:

• 8 Assignments (total 45%), each with a written and a programming
component.

• 3 Exams, each 15% (total 45%) of 80 minutes each.

• 8 Quizzes (total 10%), taken on-line.

SYLLABUS MAY 22, 2012

http://www.cs.cmu.edu/~fp/courses/15122-f10
http://www.cs.cmu.edu/~fp/courses/15122-s11
http://www.andrew.cmu.edu/course/15-122


15-122 Principles of Imperative Computation 4

A total course score of 90% and above is guaranteed an A, 80%-90% a B,
etc. but grade cutoffs may be lowered based on the difficulty of exams and
assignments. For students near grade boundaries, class participation and
extra credit will be considered at the instructors discretion.

5 Schedule

Course schedule will vary somewhat from semester to semester; the fol-
lowing is a sample schedule.

• Week 1: Course overview, contracts, introduction to C0 (functions,
statements, expressions, types), Modular arithmetic, arithmetic and
bitwise operations, arrays, loop invariants.

• Week 2: Linear and binary search, divide and conquer, asymptotic
complexity, sorting algorithms, mergesort, quicksort, program test-
ing. Exam 1

• Week 3: Queues, stacks, linked lists, pointers, recursive types, data
structure invariants, memory layout, unbounded arrays, recursion,
amortized analysis, hash tables.

• Week 4: Interfaces, priority queues, heaps, ordering and shape invari-
ants, restoring invariants, heapsort, binary search trees, Exam 2.

• Week 5: AVL trees, rotations, polymorphism, introduction to C, mem-
ory management (malloc/free), valgrind, generic data structures,
virtual machines.

• Week 6: Tries, decision trees, graph algorithms (spanning trees, union-
find).

SYLLABUS MAY 22, 2012


	Learning Outcomes
	Programming Language
	Course Materials
	Student Evaluation
	Schedule

