
C0 Primitive Operators and Invariants

C0 Primitive Operators and Invariants

Anand Subramanian
<asubrama@andrew.cmu.edu>

May 24, 2012

1

1Some slides borrowed from previous iterations of the class

C0 Primitive Operators and Invariants

Introduction

Introduction

Topics Covered:

I Recap: Primitive operations

I Example 1: Grade-School Multiplication

I Example 2: Exponentiation by Squaring (redux)

Objective:

I Get practice using C0 primitive operators

I Understand how the properties of primitive operators fit in
contracts

I Get practicing choosing when and how to use contracts

C0 Primitive Operators and Invariants

Recap: Integer operations

Recap: Integer operations
(Z232,+, ∗) (see lecture 3 notes)

Commutativity of addition x + y = y + x
Associativity of addition (x + y) + z = x + (y + z)
Additive unit x + 0 = x

Additive inverse x + (−x) = 0
Cancellation −(−x) = x

Commutativity of multiplication x ∗ y = y ∗ x
Associativity of multiplication (x ∗ y) ∗ z = x ∗ (y ∗ z)
Multiplicative unit x ∗ 1 = x

Distributivity x ∗ (y + z) = x ∗ y + x ∗ z
Annihilation x ∗ 0 = 0

C0 Primitive Operators and Invariants

Recap: Integer operations

Left Shift

Drops most significant bit. Appends 0 as least significant bit. How
does this affect the sign?

Consider x = 01111010 (8 bit arithmetic).
k x << k decimal equivalent
0 01111010 +122
1 11110100 -12 (Think: +122 ∗ 2 = +244 ≡28 −12)
2 11101000 -24
3 11010000 -48
4 10100000 -96
5 01000000 +64 (Think: −96 ∗ 2 = −192 ≡28 +64)
6 10000000 -128
7 00000000 0

Remember, in 2’s complement arithmetic, the most significant bit
is interpreted as the sign.

C0 Primitive Operators and Invariants

Recap: Integer operations

Left Shift

Drops most significant bit. Appends 0 as least significant bit. How
does this affect the sign?
Consider x = 01111010 (8 bit arithmetic).

k x << k decimal equivalent
0 01111010 +122
1 11110100 -12 (Think: +122 ∗ 2 = +244 ≡28 −12)
2 11101000 -24
3 11010000 -48
4 10100000 -96
5 01000000 +64 (Think: −96 ∗ 2 = −192 ≡28 +64)
6 10000000 -128
7 00000000 0

Remember, in 2’s complement arithmetic, the most significant bit
is interpreted as the sign.

C0 Primitive Operators and Invariants

Recap: Integer operations

Right Shift

Drops least significant bit. Duplicates most significant bit. How
does this affect the sign?

Consider x = 01111010.
k x >> k decimal equivalent
0 01111010 +122
1 00111101 +61
2 00011110 +30
3 00001111 +15
4 00000111 +7
5 00000011 +3
6 00000001 +1
7 00000000 0

C0 Primitive Operators and Invariants

Recap: Integer operations

Right Shift

Drops least significant bit. Duplicates most significant bit. How
does this affect the sign?
Consider x = 01111010.

k x >> k decimal equivalent
0 01111010 +122
1 00111101 +61
2 00011110 +30
3 00001111 +15
4 00000111 +7
5 00000011 +3
6 00000001 +1
7 00000000 0

C0 Primitive Operators and Invariants

Recap: Integer operations

Right Shift

Consider x = 10000110.
k x >> k decimal equivalent
0 10000110 -122
1 11000011 -61
2 11100001 -31 (not -30!)
3 11110000 -16 (not -15!)
4 11111000 -8
5 11111100 -4
6 11111110 -2
7 11111111 -1

C0 Primitive Operators and Invariants

Recap: Integer operations

Multiplication, Division, Modulus and Shift

I (x/y) ∗ y + x%y = x

I The quotient is truncated towards 0

I Any non-zero remainder takes the sign of x

I x >> k divides by 2k but truncates towards −∞
I x << k multiplies by 2k .

I For x >> k and x << k, only the five least significant bits of
k are considered. Why?

C0 Primitive Operators and Invariants

Recap: Integer operations

Multiplication, Division, Modulus and Shift

I (x/y) ∗ y + x%y = x

I The quotient is truncated towards 0

I Any non-zero remainder takes the sign of x

I x >> k divides by 2k but truncates towards −∞
I x << k multiplies by 2k .

I For x >> k and x << k, only the five least significant bits of
k are considered. Why?

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Example 1: Grade School Multiplication

Multiplying two 4-bit numbers:

x1 x2 x3 x4
1 0 1 0

+ 0 0 0 0
+ x1 x2 x3 x4
+ 0 0 0 0
+ x1 x2 x3 x4

We want a loop that does this.

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Programming Attempt 1

1 i n t mult (i n t x , i n t y)
2 // @ensure s \ r e s u l t == x∗y ;
3 {
4 i n t n = x ;
5 i n t k = y ;
6 i n t r e s = 0 ;
7 whi le (k != 0)
8 {
9 i f ((k & 1) == 1)

10 r e s = r e s + n ;
11 k = k >> 1 ;
12 n = n << 1 ;
13 }
14 re tu rn r e s ;
15 }

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Programming Attempt 1: Loop Invariant

1 i n t mult (i n t x , i n t y)
2 // @ensure s \ r e s u l t == x∗y ;
3 {
4 i n t n = x ;
5 i n t k = y ;
6 i n t r e s = 0 ;
7 whi le (k != 0)
8 // @ l o o p i n v a r i a n t x∗y == k∗n + r e s ;
9 {

10 i f ((k & 1) == 1)
11 r e s = r e s + n ;
12 k = k >> 1 ;
13 n = n << 1 ;
14 }
15 re tu rn r e s ;
16 }

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Programming Attempt 1: Proving the invariant

Part 1: Before the loop condition is tested for the first time, k = x
and n = y and res = 0:

x ∗ y = k ∗ n + res
= x ∗ y + 0
= x ∗ y

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Programming Attempt 1: Proving the invariant

Part 2: Assume x ∗ y = k ∗ n + res at the start of an iteration. We
wish to show that x ∗ y = k ′ ∗ n ′ + res ′ at the end of that iteration
(just before the loop condition is tested again). We consider two
cases:

a: k is even, so k&1 == 0.
Then k ′ = k>>1 = k/2 and n ′ = n ∗ 2 and res ′ = res.

k ′ ∗ n ′ + res ′ = (k/2) ∗ n ∗ 2 + res
= k ∗ n + res
= x ∗ y

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Programming Attempt 1: Proving the invariant

Part 2: Assume x ∗ y = k ∗ n + res at the start of an iteration. We
wish to show that x ∗ y = k ′ ∗ n ′ + res ′ at the end of that iteration
(just before the loop condition is tested again). We consider two
cases:

a: k is even, so k&1 == 0.
Then k ′ = k>>1 = k/2 and n ′ = n ∗ 2 and res ′ = res.

k ′ ∗ n ′ + res ′ = (k/2) ∗ n ∗ 2 + res
= k ∗ n + res
= x ∗ y

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Programming Attempt 1: Proving the invariant

Part 2:

b: k is odd, so k&1 = 1.
Then k ′ = k>>1 = (k − 1)/2 and n ′ = n ∗ 2 and
res ′ = res + n.

k ′ ∗ n ′ + res ′ = (k − 1)/2 ∗ n ∗ 2 + res + n
= (k − 1) ∗ n + res + n
= k ∗ n − n + res + n
= k ∗ n + res
= x ∗ y

So the loop invariant holds at the end of this iteration, which
means it also holds for the start of the next iteration since the loop
condition does not change the values of any variables.

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Programming Attempt 1: Proving the invariant

Part 2:

b: k is odd, so k&1 = 1.
Then k ′ = k>>1 = (k − 1)/2 and n ′ = n ∗ 2 and
res ′ = res + n.

k ′ ∗ n ′ + res ′ = (k − 1)/2 ∗ n ∗ 2 + res + n
= (k − 1) ∗ n + res + n
= k ∗ n − n + res + n
= k ∗ n + res
= x ∗ y

So the loop invariant holds at the end of this iteration, which
means it also holds for the start of the next iteration since the loop
condition does not change the values of any variables.

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Programming Attempt 1: Does it terminate?

I What if y is negative?

I Remember, >> copies over the sign bit!

I k converges to -1 instead of 0 in the loop.

I Note how this is not exactly induction. The loop-invariant
looks like an induction principle, but it is there to assert a
property about variables that have values assigned to them. It
does not establish a convergence criterion.

I Perhaps a little more like co-induction? (ask Kristina)

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Programming Attempt 1: Does it terminate?

I What if y is negative?

I Remember, >> copies over the sign bit!

I k converges to -1 instead of 0 in the loop.

I Note how this is not exactly induction. The loop-invariant
looks like an induction principle, but it is there to assert a
property about variables that have values assigned to them. It
does not establish a convergence criterion.

I Perhaps a little more like co-induction? (ask Kristina)

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Programming Attempt 1: Does it terminate?

I What if y is negative?

I Remember, >> copies over the sign bit!

I k converges to -1 instead of 0 in the loop.

I Note how this is not exactly induction. The loop-invariant
looks like an induction principle, but it is there to assert a
property about variables that have values assigned to them. It
does not establish a convergence criterion.

I Perhaps a little more like co-induction? (ask Kristina)

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Programming Attempt 1: Fix it with a pre-condition?

1 i n t mult (i n t x , i n t y)
2 // @ r e q u i r e s y >= 0
3 // @ensure s \ r e s u l t == x∗y ;
4 {
5 i n t n = x ;
6 i n t k = y ;
7 i n t r e s = 0 ;
8 whi le (k != 0)
9 // @ l o o p i n v a r i a n t x∗y == k∗n + r e s ;

10 {
11 i f ((k & 1) == 1)
12 r e s = r e s + n ;
13 k = k >> 1 ;
14 n = n << 1 ;
15 }
16 re tu rn r e s ;
17 }

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Programming Attempt 2: Eliminate the pre-condition

1 i n t mult (i n t x , i n t y)
2 // @ensure s \ r e s u l t == x∗y ;
3 {
4 i n t n = x ;
5 i n t k = y ;
6 i n t r e s = 0 ;
7 whi le (n != 0)
8 // @ l o o p i n v a r i a n t x∗y == k∗n + r e s ;
9 {

10 i f ((k & 1) == 1)
11 r e s = r e s + n ;
12 k = k >> 1 ;
13 n = n << 1 ;
14 }
15 re tu rn r e s ;
16 }

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Programming Attempt 2: Eliminate the pre-condition

1 i n t mult (i n t x , i n t y)
2 // @ensure s \ r e s u l t == x∗y ;
3 {
4 i n t n = x ;
5 i n t k = y ;
6 i n t r e s = 0 ;
7 whi le (n != 0)
8 // @ l o o p i n v a r i a n t x∗y == k∗n + r e s ;
9 {

10 i f ((k & 1) == 1)
11 r e s = r e s + n ;
12 k = k >> 1 ;
13 n = n << 1 ;
14 }
15 re tu rn r e s ;
16 }

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Programming Attempt 2: Now it is commutative!

1 i n t mult (i n t x , i n t y)
2 // @ensure s \ r e s u l t == x∗y && \ r e s u l t == mult (y , x) ;
3 {
4 i n t n = x ;
5 i n t k = y ;
6 i n t r e s = 0 ;
7 whi le (n != 0)
8 // @ l o o p i n v a r i a n t x∗y == k∗n + r e s ;
9 {

10 i f ((k & 1) == 1)
11 r e s = r e s + n ;
12 k = k >> 1 ;
13 n = n << 1 ;
14 }
15 re tu rn r e s ;
16 }

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Programming Attempt 2: Now it is commutative!

1 i n t mult (i n t x , i n t y)
2 // @ensure s \ r e s u l t == x∗y && \ r e s u l t == mult (y , x) ;
3 {
4 i n t n = x ;
5 i n t k = y ;
6 i n t r e s = 0 ;
7 whi le (n != 0)
8 // @ l o o p i n v a r i a n t x∗y == k∗n + r e s ;
9 {

10 i f ((k & 1) == 1)
11 r e s = r e s + n ;
12 k = k >> 1 ;
13 n = n << 1 ;
14 }
15 re tu rn r e s ;
16 }

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Programming Attempt 2: Oops... contracts have effects!

1 i n t mult (i n t x , i n t y)
2 // @ensure s \ r e s u l t == x∗y ;
3 {
4 . . .
5 }
6
7 i n t mul t wrappe r (i n t x , i n t y)
8 // @ensure s \ r e s u l t == mult (y , x)
9 {

10 re tu rn mult (x , y) ;
11 }

C0 Primitive Operators and Invariants

Example 1: Grade-School Multiplication

Programming Attempt 2: Oops... contracts have effects!

1 i n t mult (i n t x , i n t y)
2 // @ensure s \ r e s u l t == x∗y ;
3 {
4 . . .
5 }
6
7 i n t mul t wrappe r (i n t x , i n t y)
8 // @ensure s \ r e s u l t == mult (y , x)
9 {

10 re tu rn mult (x , y) ;
11 }

C0 Primitive Operators and Invariants

Example 2: Exponentiation by Squaring (redux)

Example 2: Exponentiation by Squaring (redux)
1 i n t exp (i n t x , i n t y)
2 // @ r e q u i r e s y >= 0 ;
3 // @ensure s \ r e s u l t == pow(x , y) ;
4 {
5 i n t r e s = 1 ;
6 i n t b = x ; /∗ base ∗/ i n t e = y ; /∗ exponent ∗/
7 whi le (e > 0)
8 // @ l o o p i n v a r i a n t e >= 0 ;
9 // @ l o o p i n v a r i a n t r e s ∗ pow(b , e) == pow(x , y) ;

10 {
11 i f ((e & 1) == 1) /∗ was e % 2 == 1 ∗/
12 r e s = b ∗ r e s ;
13 b = b ∗ b ;
14 e = e >> 1 ; /∗ was e = e / 2 ∗/
15 }
16 // @a s s e r t e == 0 ;
17 re tu rn r e s ;
18 }

C0 Primitive Operators and Invariants

Example 2: Exponentiation by Squaring (redux)

Why do our contracts still make sense?

I e >= 0

I Dividing and >> truncate in the same direction.

I The loop body has the same effect.

I Same proof as in lecture 2.

I Code may even run a bit faster (constant factor).

C0 Primitive Operators and Invariants

Example 2: Exponentiation by Squaring (redux)

Slides are incomplete

C0 Primitive Operators and Invariants

Conclusion

Conclusion

I Beware how right shift does sign-extension.

I Remember the laws of the operators. Useful to prove
contracts.

I Contracts can have effects too.

I Relational operators do not associate and distribute in
fixed-width arithmetic.

