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Tutorial Structure:
9-10:30 The Sample Complexity of Auction Design 
[Jamie] 

10:30-11 Coffee break 

11:00-12:30 Econometrics for Games 
[Vasilis] 

1:30-5:10 today and 8:30-10:30 tomorrow:  
Workshop On Interface Between Algorithmic 
Game Theory And Data Science



How much do we need to know about 
buyers to sell to them (nearly) 

optimally, and how should we sell 
with limited information about buyers?



Main take-away
“True” Lost Revenue of 

auction class C 
on distribution D 

designed from data

Representation error: 
how much revenue best 

c∈C loses on true 
distribution D

Generalization error: 
difference btwn  
c∈C’s revenue  

on data vs. on D

=

+



“Perfect Prior” Model

Exact knowledge of prior distributions

[M’81]



“Prior Free” Model

No knowledge of prior distributions

[GHW ’01, HR’08, BBHM’08*]



Sampling Model 
 (this talk)

Sample access to prior distributions
…

$1 $1.45

$3.75 $.80

$.35 $1.35

 Auction(m samples ~ (D1, … Dn)))

Revenue(Auction(m samples), (D1, … Dn)))

[DRY’10, CR’14,…]



+ (Revenue(Auction(samples), D) - Revenue(Auction(samples)))

Total Revenue

Revenue(Auction(samples), D)

Representation 
error

Generalization 
error



Prior 
Free

Perfect  
info

Unrealistic, 
 detail-dependent

Worse revenue, 
better generalization

More Revenue

Less info
Perfect  
prior

v1 � D1

v2 � D2
v3 � D3

Samples 
from prior

Tradeoff between optimality 
on sample and future 

performance



General technique: 

1. What does OPT do, assuming perfect prior? 
2. Can OPT be learned from poly samples? 
3. If not, what’s a good apx for OPT which is “simpler”?



Outline
• Sample complexity definitions 
• Single Parameter (Single Item) 

• IID 
• Non-IID 

• Regular 
• Irregular 

• Open Qs in this area 
• Multi-parameter (* If time) 



(binary setting)

Learning Theory

C = {c : X � { , }}

m samples S = {(x, y) : x � X, y � { , }}, (x, y) � D

Given S,C, pick	best c � C for S

When does ERM do well on D?

Depends on C and S together



Learning Theory

cS�(x) = for x � S�

and cS�(x) = for x /� S�

any S� � S has	a cS� � C s.t.

C can shatter S if

VC(C) = maxS that C can	shatter |S|



Learning Theory

c � C which	has	error � � + OPT(C)
C must contain a 
good classifier

S is big enough

Given S,C, pick	best c � C for S



(real-valued/auction setting)

Learning Theory

Given S,C, pick	best c � C for SGiven S,C, pick c � C which	has	highest	revenue	for S

When does ERM do well on D?



Shattering

PD(C) = maxS that C can	shatter |S|



Learning Theory

c � C which	has	error � � + OPT(C)

Given S,C, pick	best c � C for S

c � C which	has	revenue � OPT(C) � �

uniform convergence 
 over C



Outline
• A few words/notations about sample complexity 
• Single Parameter (Single Item) 

• IID 
• Non-IID 
• Computational 
• Open Qs in this area 

• Multi-parameter 
• Online questions



General technique: 

1. What does OPT do? 
2. Can OPT be learned from poly samples? 
3. If not, what’s a good apx for OPT which is “simpler”?



In Single Parameter Settings: 

Always do Myerson 
(or some approximation) 

…. because Myerson is optimal



Single Parameter Setting

�v1, . . . , vn, �i, v�
i ,

vi · ai(v) � pi(v) � vi · ai(v�i, v�
i) � pi(v�i, v�

i)Truthful utility Misreporting utility

� a monotone, p charges	winner(s)	min	winning	bid

Independent

So, we will (mostly) only talk about allocation rules,  
since they define truthful payments



The Myerson Auction: 
 maximizes revenue in this setting

“virtual value”

Depends delicately on prior distributions



The Myerson Auction: 
 maximizes revenue in this setting

“virtual value”

More generally, for any auction 



Outline

• A few words/notations about sample complexity 
• Single Parameter (Single Item) 

• Regular, IID 
• Why the “obvious” approach might overfit 

• Regular, Non-IID 
• Irregular, Non-IID 
• Open Qs in this area 

• Multi-parameter 
• Online questions



n regular IID Buyers

The set of possible allocations 
pretty large…

… but Myerson is pretty simple.



v* acts as a reserve 
price

Only part to “learn”, 
a single parameter: 

smallest v* for which 
ɸ(v*) > 0

Opt for n regular IID Buyers



n regular IID Buyers from 
samples

v* acts as a reserve 
pricevv vvv v

How to do this with samples?

A: pick v* w. highest revenue on samples!

Only part to “learn”, 
a single parameter: 

smallest v* for which 
ɸ(v*) > 0



Why this might not work

[* Due to DRY’10]

“straight up” empirical Myerson might overfit.

R(q), revenue of quantiles, for F

q

R(q)
m

v* v* + η0

1/m
1/m

...

Can see too many large samples of m…

Lots of “big” samples somewhat above v*

rest of empirical distribution accurate

and will lose a constant factor of revenue

best empirical reserve will be too high

So, even for a single regular distribution, empirical Myerson “overfits”! 

(No distribution-independent 1-ɛ-approximation)



Only part to “learn”, 
a single parameter: 

smallest v* for which 
ɸ(v*) > 0

v* acts as a reserve 
price

vv vvv v

How to do this with samples?

A’: pick v* w. highest revenue on samples

s.t v* <  m𝜖-th highest sampled value

Fixing the overfitting



[DRY’10, HMR’15]

v1≥ v2≥ v3

v*
vm𝜖

…

vm-1≥ vm

…

Theorem:  
For IID regular bidders



Main take-away: IID Regular

“True” Lost Revenue of 
auction class C 

on distribution D

Representation error: 
how much revenue best 

c∈C loses on true 
distribution D

Generalization error: 
difference btwn  
c∈C’s revenue  

on a sample vs. on D

=

+Representation error: 
At most (1-𝜖) for  
guarded reserve

Generalization 
error: 

(1-𝜖) for guarded 
reserve



Outline

• A few words/notations about sample complexity 
• Single Parameter (Single Item) 

• IID, Regular 
• Non-IID, Regular 
• Non-IID, Irregular 
• Open Qs in this area 

• Multi-parameter (Time permitting)



Myerson for n non-iid  
regular buyers

Need not be well-behaved

So, in general, no simple form



How to do this with samples?

Something that “looks like” Myerson on samples,

truncating m𝜖 highest sampled values for each dist.

[CR’14]

Myerson for n non-iid buyers 
from samples?



poly(n, 1/Ɛ) sample complexity 
(upper and lower bounds) 
for single item, (MHR ➾ regular) distributions

Stylized analysis, less “portable” to different settings.

Theorem:  
For non-IID regular bidders

Something that “looks like” Myerson on samples,
truncating m𝜖 highest sampled values for each dist.



Main take-away: non-IID 
regular setting

“True” Lost Revenue of 
auction class C 

on distribution D 
designed from data

Representation error: 
how much revenue best 

c∈C loses on true 
distribution D

Generalization error: 
difference btwn  
c∈C’s revenue  

on data vs. on D

=

+Representation error: 
(1-𝜖) for truncating 

empirical distributions

Generalization error: 
at most (1-𝜖) for running 

empirical Myerson



Outline

• A few words/notations about sample complexity 
• Single Parameter (Single Item) 

• IID, Regular 
• Non-IID, Regular 
• Non-IID, Irregular 
• Open Qs in this area 

• Multi-parameter (Time permitting)



For n non-iid buyers

DHP’16 → improved regular upper bound, 
general downwards-closed single-parameter

CR’14 → poly(n, 1/Ɛ) sample complexity 
(upper and lower bounds) 
for single item, (MHR or regular) distributions

MR’15 → improved MHR upper bound, 
extend to irregular, 
general single-parameter 
(non-computational)

Uses “standard” ML techniques: 
 applies to more general settings, tighter bounds, 

 NOT computationally efficient



General technique: 

1. What does OPT do? 
2. Can OPT be learned from poly samples? 
3. If not, what’s a good apx for OPT which is “simpler”?



Myerson for n non-iid  
irrregular buyers

“Ironed” virtual value 

So, in general, no simple form

Need not be well-behaved



Proof Technique

[MR’15]

Design set of auctions C : 
  

C has a (1- Ɛ)-opt auction 
for all distributions

Show C is “simple” : 
For all f∈C 

polynomial sample’s 
 empirical revenue (f) ≈ 

true revenue (f)

Based on poly sample S, f∈C w. best revenue on S 
  

will be (1- Ɛ)-opt for true distribution

(1- Ɛ)-opt 



Attempt 1

[MR’15]

Design set of auctions C : 
  

C has a (1- Ɛ)-opt auction 
for all distributions

Show C is “simple” : 
For all f∈C 

polynomial sample’s 
 empirical revenue (f) ≈ 

true revenue (f)

Based on poly sample S, f∈C w. best revenue on S 
  

will be (1- Ɛ)-opt for true distribution

(1- Ɛ)-opt 

C = 
Set of Myerson auctions for 

all distributions 
(perhaps truncated?)

Use pseudo-dimension 
 to show polynomial 

 uniform convergence of C



Where this goes wrong

Myerson’s Class is “complicated”

(in a formal sense)



v

φ(v)

φ1(v)
φ2(v)

Myerson’s Class is 
Complicated

If 1 wins at (v1, v2)  

For any other (v’1, v’2),  

if v’1 >v1 and v2 > v’2 

Then 1 wins 
Else either could win

The set of all allocation rules is highly unconstrained….

v1v2

Myerson’s Class 
1. Has infinite pseudo-dimension 

2. Doesn’t have finite-sample 
 uniform convergence guarantees…



Attempt 2

[MR’15]

Show C is “simple” : 
For all f∈C 

polynomial sample’s 
 empirical revenue (f) ≈ 

true revenue (f)

Based on poly sample S, f∈C w. best revenue on S 
  

will be (1- 𝜖)-opt for true distribution

C = 
Set of Myerson auctions for 

all distributions

Use pseudo-dimension 
 to show polynomial 

 uniform convergence of C

C = 
Set of approximate 

Myerson auctions for all 
distributions



Apx optimal auctions for n 
irregular iid bidders

Want: 
A set of auctions with  
1. more constrained allocation rules than Myerson 
2. Still contains an auction for each distribution: 

1. agrees with Myerson’s allocation mostly? 
2. Or only disagrees with Myerson when doing 

so loses very little revenue



The Myerson Auction: 
 maximizes revenue in this setting

More generally, for any auction 



For n non-iid buyers

So… what about estimating virtual value 
curves to some reasonable precision?

v
0

ε
2ε

1

1+ ε

(1+ ε)2

H
φ1(v)

φ2(v)

v
0

ε
2ε

1

1+ ε

(1+ ε)2

H
φ1(v)

φ2(v)



Class of Apx OPT Auctions CB

v
0

ε
2ε

1

1+ ε

(1+ ε)2

H

On
e 

Au
ct

io
n 

A “Parameters”: 
locations of 

jumps

Why does this 
class contain 

an (1-𝜖)-optimal 
auction?

Fix distribution, 
find auction in 
class which is 
(1-𝜖)-optimal .



Fix D1, … Dn. Find auction in 
CB which is apx optimal

On
e 

Au
ct

io
n 

A

What is the 
expected revenue 
of this auction?

Hint: Compare to 
 true Myerson

Never get negative v.v.

𝜖 additive apx

(1-𝜖) mult apxSo, will ultimately be a(1-𝜖) mult apx to 
ironed virtual values! 💪



For n non-iid buyers

v
0

ε
2ε

1

1+ ε

(1+ ε)2

H
φ1(v)

φ2(v)

v
0

ε
2ε

1

1+ ε

(1+ ε)2

H
φ1(v)

φ2(v)



Attempt 2

[MR’15]

Design set of auctions C : 
  

C has a (1- Ɛ)-opt auction 
for all distributions

Based on poly sample S, f∈C w. best revenue on S 
  

will be (1- Ɛ)-opt for true distribution

C = 
Set of Myerson auctions for 

all distributions

Use pseudo-dimension 
 to show polynomial 

 uniform convergence of C

C = 
Set of approximate 

Myerson auctions for all 
distributions



Why is this class learnable?

Bound the pseudo-dimension of CB…

On
e 

Au
ct

io
n 

A



Pseudo-Dimension

any S� � S has	a cS� � C s.t.

C can shatter S if

PD(C) = maxS that C can	shatter |S|

there	is	some (r1, . . . , rm) � Rm,m = |S|, s.t



Upper bound on PD(CB)

r1

f(v1)
r2

r3

r4

r5

f(v2)
f(v3)

f(v4)

f(v5) r1

r2

r3

r4

r5
g(v1)

g(v2)
g(v3)

g(v4)

g(v5)r1

r2

r3

r4

r5
g(v1)

g(v2)

g(v3)

g(v4)

g(v5)



Upper bounding  
# of sign patterns



Bounding the pseudo-
dimension



Bounding the  
pseudo-dimension



Theorem:  
For non-IID irregular bidders



Main take-away: non-IID 
regular setting

“True” Lost Revenue of 
auction class C 

on distribution D 
designed from data

Representation error: 
how much revenue best 

c∈C loses on true 
distribution D

Generalization error: 
difference btwn  
c∈C’s revenue  

on data vs. on D

=

+Representation error: 
(1-𝜖) for using only 

estimated virtual values

Generalization error: 
at most (1-𝜖) from 

uniform convergence



Outline

• Learning Theory Basics 
• Single Parameter (Single Item) 

• Regular, IID 
• Regular, Non-IID 
• Irregular, Non-IID 
• Related Work/Open Qs in this area 

• Multi-parameter 



Related Work
General sampling for mechanism design 
  - BBHM ’05: Reducing mechanism design to algorithm 
design via machine learning. 
Finite Support 
  - Elkind ’07: Designing and learning optimal finite support auctions 
IID, MHR and Regular 
  - DRY’10: Revenue Maximization with a Single Sample 
  - HMR’15: Making the Most of Your Samples 
IID, irregular 
  - SR’16 [This EC!]: Ironing in the Dark 
Non-IID 
  - CR’14 (MHR + Regular): The Sample Complexity of Revenue Maximization 
  - MR’15 (also MHR): The Pseudo-Dimension of Near-Optimal Auctions 
  - DHR’16 (Regular): The Sample Complexity of Auctions with Side Information



Technical open questions
Do irregular iid settings need poly(n) samples for 
computationally efficient algorithms? 

What is a computationally efficient algorithm for non-iid 
irregular settings w. polynomial sample complexity? 

Are there separations in sample complexity information 
theoretically vs. computationally? 

Close various gaps… 
- Does regular single parameter s.c. depend on n?



Open-ended open questions

In what contexts is it better to “mix” two distributions 
and draw twice from an irregular distribution for 
sample complexity?

What other properties of distributions might decrease 
the sample complexity of learning nearly optimal 
auctions?



Related Work:  
Single Parameter

General sampling for mechanism design 
  - BBHM ’05: Reducing mechanism design to algorithm 
design via machine learning. 
Finite Support 
  - Elkind ’07: Designing and learning optimal finite support auctions 
IID, MHR and Regular 
  - DRY’10: Revenue Maximization with a Single Sample 
  - HMR’15: Making the Most of Your Samples 
IID, irregular 
  - SR’16 [This EC!]: Ironing in the Dark 
Non-IID 
  - CR’14 (MHR + Regular): The Sample Complexity of Revenue Maximization 
  - MR’15 (also MHR): The Pseudo-Dimension of Near-Optimal Auctions 
  - DHR’16 (Regular): The Sample Complexity of Auctions with Side Information



Grand Slide of Single Buyer/IID 
results. Red are non-computational.

Feasibility Single 
Buyer 
MHR

Single 
Buyer 

𝛂-strongly 
regular

Single 
Buyer 

regular

Single 
Buyer 

bounded

IID 
MHR

IID 
regular

IID 
bounded

Single Item

Matroid

Downward 
closed



Grand Slide of All results.  
Red are non-computational.

Feasibility Non-IID, MHR Non-IID, 𝛂-strongly 
Regular

Non-IID, Regular Non-IID,  
Bounded

Single Item

Matroid

Downward closed

General 



Outline

• Learning Theory Basics 
• Single Parameter (Single Item) 

• Regular, IID 
• Regular, Non-IID 
• Irregular, Non-IID 
• Related Work/Open Qs in this area 

• Multi-parameter 



Setting:  
Selling to Combinatorial bidders

{kv1 � D1
v2 � D2
v3 � D3

…



Multiparameter… less well 
understood on both sides.

A few pointers to papers on sample complexity 
- Balcan, Blum, Hartline, Mansour ‘05  
- Balcan, Devanur, Hartline, Talwar ‘07 
- Agrawal, Wang, Ye ‘14 
-  Devanur and Hayes ‘09 
- Dughmi, Han, Nissan ‘14 
- Morgenstern and Roughgarden ‘16 
-  Goldner, Karlin ’16



Thanks!


