
Learning What’s Going on: Reconstructing Preferences and Priorities
from Opaque Transactions

AVRIM BLUM, Carnegie Mellon University
YISHAY MANSOUR, Tel Aviv University
JAMIE MORGENSTERN, Carnegie Mellon University

We consider a setting where n buyers, with combinatorial preferences over m items, and a seller, running
a priority-based allocation mechanism, repeatedly interact. Our goal, from observing limited information
about the results of these interactions, is to reconstruct both the preferences of the buyers and the mecha-
nism of the seller. More specifically, we consider an online setting where at each stage, a subset of the buyers
arrive and are allocated items, according to some unknown priority that the seller has among the buyers.
Our learning algorithm observes only which buyers arrive and the allocation produced (or some function
of the allocation, such as just which buyers received positive utility and which did not), and its goal is to
predict the outcome for future subsets of buyers. For this task, the learning algorithm needs to reconstruct
both the priority among the buyers and the preferences of each buyer. We derive mistake bound algorithms
for additive, unit-demand and single minded buyers. We also consider the case where buyers’ utilities for a
fixed bundle can change between stages due to different (observed) prices. Our algorithms are efficient both
in computation time and in the maximum number of mistakes (both polynomial in the number of buyers
and items).

Categories and Subject Descriptors: F.2.0 [Theory of Computation]: ANALYSIS OF ALGORITHMS AND
PROBLEM COMPLEXITY

General Terms: Mechanism Design, Learning Theory, Algorithms

Additional Key Words and Phrases: Mechanism design; mistake-bound learning

ACM Reference Format:
Avrim Blum, Yishay Mansour, Jamie Morgenstern, 2015. Learning What’s Going on: Reconstructing Prefer-
ences and Priorities from Opaque Transactions. ACM X, X, Article X (February 2015), 19 pages.
DOI = 10.1145/2764468.2764492 http://doi.acm.org/10.1145/2764468.2764492

1. INTRODUCTION
A collection of lobbyists enter a politician’s office. An hour later, they emerge, some
happy and some unhappy. The next day, a different subset of lobbyists enter, and again
some emerge happy and some unhappy. Suppose that what is happening is that the
politician has a collection of m favors (items) to distribute, along with a priority order-
ing over lobbyists; the lobbyists are single-minded, each lobbyist i with a demand-set
Di ⊆ {1, . . . ,m}. The politician orders the lobbyists who arrived that day by priority

Blum was supported in part by the National Science Foundation under grants CCF-1101215, CCF-1116892,
CCF-1331175, and IIS-1065251. Email: avrim@cs.cmu.edu. Mansour was supported in part by The Israeli
Centers of Research Excellence (I-CORE) program, (Center No. 4/11), by a grant from the Israel Science
Foundation (ISF), by a grant from United States-Israel Binational Science Foundation (BSF), and by a
grant from the Israeli Ministry of Science (MoS). Email: mansour@tau.ac.il, Morgenstern was supported in
part by the National Science Foundation under grants CCF-1116892, CCF-1331175, CCF-1415460 and by a
Simons Award for Graduate Students in Theoretical Computer Science. Email: jamiemmt@cs.cmu.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EC’15, June 15–19, 2015, Portland, OR, USA. ACM 978-1-4503-3410-5/15/06 ...$15.00.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
http://dx.doi.org/10.1145/2764468.2764492

and hands each one Di if it is still available (making the lobbyist happy) or handing
her nothing if Di is no longer available (making the lobbyist unhappy). Can we re-
construct the politician’s priority ordering and the lobbyists’ demand-sets (or at least,
given a set of lobbyists, predict which will end up happy and which unhappy, since we
cannot observe the items themselves) from these types of observations?

Alternatively, in the context of computational advertising, consider a publisher that
owns a web site and has some collection of advertisers. The advertisers tell the pub-
lisher which potential impressions are relevant to them (are they interested in this
type of impression), their bid (the value they are willing to pay for a relevant impres-
sion) and conflicts (which competing advertisers they refuse to appear concurrently
with, for example, competing car makers for a car ad). Each time a user visits a web-
page, the publisher’s ad server considers the subset of relevant advertisers. It then
orders the advertisers (say, by their bid) and greedily assigns an impression to an ad-
vertiser if it does not introduce a conflict (otherwise it skips this advertiser). From
observing which advertisements are shown and which are not, and knowing which
advertisers are relevant, can we learn the conflicts and priority ordering?

In this paper, we consider this and several closely related problems. Formally, we
assume there are n buyers (lobbyists or advertisers) and a mechanism (the politician
or ad server) which has a priority ordering over buyers that is unknown to us. There
is a collection of m items, and the buyers each have utility functions over subsets of
items (e.g., the examples above correspond to the case of single-minded buyers1). At
each time-step t, some set St ⊆ {1, . . . , n} of buyers arrive. The mechanism then orders
the buyers in St by priority and allocates to each its most-preferred bundle from the
collection of items not yet given to earlier buyers in the ordering. Finally, we observe
some function yt of the outcome (allocation). We will consider the case that buyers are
single-minded and yt indicates which buyers received positive utility and which did
not (as in the examples above), as well as the case that buyers are unit-demand or
additive, and yt indicates the items (if any) that each buyer received. Our goal will
be to predict yt from St, and we will present efficient algorithms that can do so while
making only a bounded (polynomial in n and m) number of mistakes in total. Formally,
we will be working in the online mistake-bound model, where on each round t we are
given St and try to predict yt. If our prediction is incorrect we are shown the true
yt and charged one mistake. Our goal is to design polynomial-time algorithms that
have a worst-case number of mistakes (known as mistake bounds) that are as small
as possible. We remark that we consider priority-based mechanisms because they are
particularly clean and have the desirable property that allocation is easy when all the
information is known. It would be of interest to consider this problem for other kinds
of mechanisms as well.

Notice that the setting of single-minded buyers can exhibit significant non-
monotonicities. For example, consider two lobbyists a and b whose demand sets Da

and Db do not overlap, and with a having higher priority than b. It could be that a’s
presence has no effect on b (since their sets don’t overlap); it could be that a’s pres-
ence helps b (if there is a lobbyist c present, with priority between a and b, such that
Da ∩ Dc 6= ∅ and Dc ∩ Db 6= ∅); or, it could be that a’s presence hurts b (if there are
lobbyists d, e present with Da ∩ Dd 6= ∅, Dd ∩ De 6= ∅, and De ∩ Db 6= ∅, with ordering
a � d � e � b).

To get a feel for the type of results we are aiming for, we describe here a simpler
case of this problem and how one can solve it (and, for an overview of the results, see

1In the case of advertisers, each pairwise conflict can be modeled as an abstract item that belongs to the
demand-set of both conflicting advertisers.

Table 1). Suppose buyers are additive rather than single-minded,2 and yt denotes the
allocation of items to the agents in St. This problem is monotonic in some sense: if
St′ ⊆ St and i ∈ St′ , then yti ⊆ yt

′

i (including more buyers reduces the allocation for
i). It is possible to solve this problem tracking two things: first, for a given buyer i,
track the set of items i has ever won, and second, an estimate the relative ordering
of the buyers �̂. Consider some item j that buyer i wins in some round. Buyer i will
take item j whenever it is still available, so if buyer i doesn’t win item j, we learn that
buyer i is later in the ordering than the winner of item j. To predict the allocation for
a set St, we order buyers in St according to �̂, and in that order, give the buyers all of
the remaining items she has bought before.

The algorithm will make two types of mistakes, and we can limit the number of each.
Consider the first buyer (according to �̂) for whom we make a mistake in predicting
her allocation. Suppose she won some item j that we did not predict she would get.
Since she was the first mistake according to �̂, we did not predict that someone earlier
in �̂ won item j. Thus, item j was available in our prediction when we reached buyer
i: we did not allocate item j to her because we had never seen her win item j before.
There are at most nm of these sorts of mistakes to make (one per item/buyer pair).
Suppose instead we predicted that some item j would be allocated to buyer i but she
did not get item j. Since we predicted item j for buyer i, buyer i must have won item
j before (and is therefore interested in item j). Then, it must be the case that buyer
i is later in the true ordering than in �̂: the winner of item j must be earlier than
buyer i. Then, we can update �̂ by demoting buyer i: if done carefully, as we describe
in Section 3, i will never be demoted further than her true position in the ordering, so
there will be at most n2 mistakes of this type.

1.1. Our Results
This paper presents several mistake-bound learning algorithms for priority-ordered
mechanisms. The crux of these algorithms is to learn the hidden priority order, or per-
mutation over buyers, in a way that meshes well with learning the players’ preferences
at the same time, all in a mistake-bound framework. First, we consider the case with-
out prices (or equivalently, when prices are fixed across time). In the case of a single
item, this problem reduces to learning the priority order over buyers. Previous work
describes how to efficiently sample linear extensions of partial orders [Karzanov and
Khachiyan 1991], which can be combined with a simple halving algorithm to learn a
permutation with a mistake bound of Θ(n log(n)) when mistakes are accompanied with
some pair i, j which were mis-ordered (see Section 6). When buyers have more general
valuations, however, it is not clear how to use this algorithm to learn the priority or-
der over buyers.3 algorithm for learning a permutation whose mistake bound is Θ(n2)
(when a mistake is accompanied by some element of the permutation that needs to
be demoted rather than a pair of elements for which the permutation was incorrect).
With this algorithm, we build mistake-bound learning algorithms for single-minded,
unit-demand, and additive buyers with fixed prices, and for unit-demand and additive
buyers with variable, observable prices. The precise form of these bounds is summa-
rized in Table 1, along with several information-theoretic lower bounds. The results for

2For each buyer i and each item j, either buyer i either wants j or she doesn’t, and buyer i takes all items
that she wants that are available when it is her turn. One can think of this as the behavior of additive
buyers in the presence of fixed prices.
3In the case of a single item, we learn that the true winner has higher priority than everyone else. In general,
mistakes don’t give such a simple constraint on the ordering of buyers. When there are multiple items, a
buyer may get item a or b, depending upon who else shows up: one of these might be due to her preferences,
and one might have to do with the availability of one of the items; it is not a priori clear which is the case.

Type of buyers Prices (fixed or variable) Mistake Bound
Single-minded fixed Θ(n2)

Single-item fixed Θ(nm log(m))
Additive fixed O(nm+ n2)

Unit-demand fixed O(n2m log(m)),Ω(nm log(m))
Additive variable O(n2m log(V))

Unit-demand variable O(n2MB)

Fig. 1. Summary of our results; V is the maximum value any buyer has for an item and MB is the mistake
bound for the Ellipsoid algorithm. The lower bounds are information-theoretic. Our algorithm for single-
minded buyers applies even to the case where observations are only which buyers get their set and which
do not, rather than the explicit allocation.

additive and unit-demand buyers also apply to the case where there are multiple copies
of goods. Our results for single-minded buyers hold for a restricted model where our
observations (and goal for prediction) are only the set of satisfied agents, rather than
the allocation. We also show that this restricted observation model is computationally
intractable for unit-demand bidders under cryptographic assumptions by reducing to
the problem of learning boolean formulas [Kearns and Valiant 1994].

1.2. Related Work
Our work is related to the literature on learning from revealed preferences [Samuel-
son 1938][Varian 2006], which considers the problem of learning about a single buyer
from observing her behavior under observed prices. Rationalizable demands (according
to some prices) are those which can arise from maximizing some concave, monotone,
continuous value function subject to a budget constraint. Beigman and Vohra [2006]
show that there exist continuous, nondecreasing and concave utility functions which
have unbounded query complexity; they give algorithms with finite sample complexity
bounds for learning and predicting from rationalizable demand/price pairs for some
special cases. Zadimoghaddam and Roth [2012] gave computationally efficient ver-
sions of these algorithms for linear and linearly separable utilities. Amin et al. [2014]
consider both the problem of setting prices (minimizing regret w.r.t revenue) and the
prediction problem (minimizing classification mistakes w.r.t. exogenous prices) for the
online version of this problem. Balcan et al. [2014] give tight sample complexity results
for predicting linear, separable piecewise linear concave, CES, and Leontif preferences,
and extend the results to the agnostic setting. Their results extend to indivisible goods
and certain nonlinear pricing.

Our work differs from the work on revealed preferences in two key ways. One is
that in the settings we consider, each observed transaction involves multiple buyers:
as a result, a buyer might not get some item because it was not in her desired bundle,
or might not get it because the item (or a complement to it) was taken by some other
buyer. The other is that we also, at the same time, are aiming to learn an unknown pri-
ority ordering for the seller. The algorithms we derive use as subroutines algorithms
that are closely related to those for learning decision lists in a mistake bound set-
ting [Helmbold et al. 1990]. We also employ a mistake bound learner for classification
by halfspaces from Maass and Turán [1990] for efficiently learning a classifier for a
fixed unit-demand buyer.

2. MODEL AND PRELIMINARIES
Let B be a set of n buyers and I be a set of m items. Each buyer i ∈ B has some
combinatorial valuation vi over subsets of items T ⊆ I. A priority-ordered mechanism
M consists of an ordering over buyers � and allocates items in I as follows. At each

time t, an arbitrary subset St of the n buyers arrives online. Then, in order according
to �, each buyer in St chooses the bundle from the remaining items that maximizes
her value. So, the buyer i1 in St who is first according to � chooses the bundle Xt

i1
⊆ I

of maximum value to her, then the buyer i2 in St who is second according to � chooses
the bundle Xt

i2
⊆ I \Xt

i1
of maximum value to her, and so on.

The label yt for the example St is some function obs of the allocation (Xt
1, . . . , X

t
n) =

M(St) which arises from this process. Our goal will be to predict yt = obs(M(St)) for a
new subset St given our previous observations. We will focus on obs = Id (the identity
function; our goal is to predict the allocation) and obs = (I[Xt

1 6= ∅], . . . , I[Xt
n 6= ∅]) (the

function which indicates which buyers bought at least one item; our goal is to predict
which players have positive utility).

We will be working in the mistake-bound model, where our learning algorithmM
will progress as follows. In each round, the algorithm is presented with a subset St. The
algorithm’s current prediction,M(St), will be output. Then, the algorithm observes the
true label yt = obs(Xt

1, . . . , X
t
n). IfM(St) 6= yt (the label predicted is incorrect), round

t is counted as a mistake. The goal in mistake-bound learning is to bound the worst-
case total number of mistakes made over an arbitrarily long sequence of examples
presented to the algorithm. We will call this worst-case bound the mistake bound
for learning algorithmM.

We also consider an extension of this setting, where each example is a pair (St, pt)
of a subset of buyers and a price vector pt ∈ Rm. Then, in order according to �, the
buyers in St each chooses a bundle from the remaining items maximizing her utility.
We assume that their utility is quasi-linear in money, i.e., that ui(Xt

i , p
t) = vi(X

t
i) −∑

j∈Xt
i
pt(j) (where Xt

i ⊆ I represents the bundle player i chose). We call this model
the variable-price model; the previous model, described without prices, can be thought
with a fixed price vector p which does not vary across examples. We also note that,
for several of the problems we study, our algorithms extend to the case where for each
item e ∈ I, there are ke copies of that item (here, we assume buyers are unit-demand
in each item, so they will never purchase more than one copy of a given item).

3. SINGLE-MINDED BUYERS
Suppose there are n single-minded buyers. That is, each bidder i has a single demand
set Di for which she has value vi(Di) > 0. At each time t, a subset St ⊆ [n] arrives,
and each buyer in St is offered the items which haven’t been taken by earlier buyers.
If buyer i is offered some set which includes Di, she will take Di, otherwise she will
take nothing (one can imagine ε prices giving a disincentive to take excess items).
Let W t denote the set of buyers who won their demand sets in example St (so W t =
obs(M(St))). From W t and St alone, we wish to be able to predict the winning set W t′

for a new subset St′ , where our performance objective is the number of mistakes made.
Suppose for a moment our learning algorithm knew � but not the demand sets Di.

From � alone, we cannot predict sets W t′ given St′ : we need to understand which
buyers have items in common between their demand sets (e.g., if Di ∩ Dj 6= ∅, then i
and j will not simultaneously be in any winning set). For this reason, we call i and j
in conflict if Di ∩ Dj 6= ∅. Consider the graph G(V,E) where V = [n] and there is an
edge (i, j) ∈ E iff buyers i and j have a conflict: we call this the conflict graph. For
each pair of buyers (i, j), if i, j ∈ W t for some St, the two buyers clearly do not have a
conflict. Notice that, even if i � j, there will be cases when j ∈ W t but i /∈ W t (if i has
a conflict, say, with an earlier winning buyer, but j does not). Thus, to predict whether
buyer i will win, it is not sufficient to know simply who has precedence over i and who
conflicts with i: we need more information about the structure of the conflict graph.

Notice that, given the conflict graph G and the ordering over buyers �, we can pre-
dict the winnersW t for an arbitrary subset St. In particular, buyer iwins exactly when
no one before i won with whom i has a conflict. So, we can predict the entire winning
set by scanning through St in the order � and adding buyer i to W t if no conflicting
buyer is already in W t. Thus, we are done if we can learn both G and �.

We start by presenting a mistake-bound procedure PermULearn (informally alluded
to in the introduction) to learn a permutation � in a model where each time it makes a
mistake by guessing �̂t, it is told some item dt that is incorrectly above some other item
r in �̂t (but is not told r). The procedure employs a data structure P = (�̃, O), where �̃
is a permutation and O is a partition of the buyers to levels. Given a permutation σ, let
Loc(i, σ) denote the position of i in σ and let Buyer(k, S, σ) denote the name of the kth
element in σ restricted to S. The data structure at time t is P t and we will associate P t

with its output permutation �̂t, so that Loc(i, P t) = Loc(i, �̂t
). The key interface with

P t will be the function Demote(dt, P t), employed when dt is returned as a mistake (an
item that is incorrectly above some other item r in �̂t). The algorithm is quite similar
to that used for learning decision lists in a mistake bound setting [Helmbold et al.
1990]. We use the following lemma throughout the rest of our analysis.

Subroutine PermULearn: Maintains level ordering over [n] and predicts permu-
tation �̂t, an estimate of �. Given an error, receives i ∈ [n] s.t. ∃r s.t. i �̂t

r but r � i.

Let �̃ be an arbitrary ordering for tie breaking;
* InitPerm, put all items at level 1 *

O1 = {1, . . . , n} O2,...,n = ∅ �̂0
= �̃;

* Permutation(P t), outputs consistent permutation *
for l = 1 to |O| do

πl = Order Ol, level l of O, according to �̃;

�̂t
= π1 · π2 · . . . πl the concatenation of the levels’ permutations;

* Demote(i, P t), demote bidder i *
Let k be the level in which i resides, e.g., i ∈ Ok;
Let O′k = Ok \ {i}, O′k+1 = Ok+1 ∪ {i};
Let O′ = (O1, . . . , Ok−1, O

′
k, O

′
k+1, Ok+1, . . .);

Let P t+1 = (�̃, O′);
�̂t+1

= Permutation(P t+1);

LEMMA 3.1. PermULearn has a mistake-bound ofO(n2) for learning a permutation
� if when �̂t 6=�, it is given some dt ∈ [n] such that ∃r such that dt �̂t

r but r � d.

PROOF. Let Level(i, O) be the level of buyer i in O, i.e., Level(i, O) = j where i ∈ Oj .
Let dt be the element given (and demoted by PermULearn) at time t. We show by
induction on the algorithm’s pushing down elements that no dt is pushed to a level
below her location in �, i.e., Loc(i,�) ≥ Level(i, Ot). If this is the case, the algorithm
is correct: at most n2 pushes can occur and the limit of these push-downs is some
consistent permutation. Prior to any elements being pushed down, all elements are at
the first level, hence Loc(i,�) ≥ Level(i, O0) initially.

Now, suppose that the inductive hypothesis holds at time t − 1, i.e., for any item i
we have Loc(i,�) ≥ Level(i, Ot−1). Our induction hypothesis implies two things: first,
that Loc(dt,�) ≥ Level(dt, Ot−1) and second, Loc(r,�) ≥ Level(r,Ot−1)

Our assumption states that when dt is demoted, there is some element r such that
Loc(dt,�) > Loc(r,�) but Loc(r, P t) > Loc(dt, P t) ≥ Level(dt, Ot−1). The second im-
plication of our induction hypothesis states, prior to the t-th demotion, Loc(r,�) ≥
Level(r,Ot−1). Since Loc(r, P t) > Loc(dt, P t), it must be the case that Level(r,Ot−1) ≥
Level(dt, Ot−1) (r is only given a later location in P t than dt if she is at a weakly larger-
numbered level). Thus, Loc(dt,�) > Loc(r,�) ≥ Level(r,Ot−1) ≥ Level(dt, Ot−1), so
Loc(dt,�) > Level(dt, Ot−1) and pushing dt to level Level(dt, Ot−1) + 1 maintains the
invariant. So the algorithm is correct, and no element is pushed more than n times,
implying a mistake bound of n2.

Thus, PermULearn is guaranteed to learn a consistent ordering, so long as we never
request a demotion of a buyer who shouldn’t be demoted. So, when we use this proce-
dure, it suffices to show that we never demote a buyer i unless there is some buyer i′
later in P t but earlier in � to guarantee that we learn a consistent ordering with at
most O(n2) mistakes.

Before giving our main result, we first briefly mention that PermULearn is enough
to learn in the simpler case that obs = Id (we observe the entire allocation, not just
who is in the winning set).

COROLLARY 3.2. There is an efficient algorithm for predicting when obs = Id (the
allocation) for subsets of single-minded bidders with a mistake bound of O(n2).

PROOF. Use an instantiation of the permutation data structure P as above. For
each bidder i, let D̂i = ∅ initially. Whenever we see a bidder i win a nonempty set,
set D̂i = Xi = Di. When a subset St arrives, in order according to P , allocate j ∈ St

his set D̂j if it is still available (otherwise, X̂j = ∅). When this allocation rule makes
a mistake, consider it, the first bidder (according to the ordering P) for which our
algorithm mis-allocated items. There are two possible mistakes: X̂it = ∅ but Xit = Dit ,
or Xit = ∅ but X̂it = Dit . The first case can occur for two reasons: we have never seen
it win, in which case we have D̂it = ∅, so we then set D̂it = Dit (there are at most n
of these errors), or because there is some i′ such that it � i′ but i′�̂t

it (who conflicts
with it). But this is not possible, or i′ would be an earlier mistake. The second kind of
mistake can only occur because there is some i′ such that i′ � it but it�̂t

i′ (it is too
early in the permutation). Thus, by Lemma 3.1, demoting it in these cases is valid and
leads to a mistake bound of O(n2). Thus, in total, there are O(n2) mistakes made by
this algorithm.

It remains to show how we can use the permutation data structure to solve our
original problem, that of learning � alongside the conflict graph for single-minded
buyers when we only observe the winning sets W t. The intuition behind our main
algorithm is as follows. We will initialize the permutation data structure and begin by
assuming the conflict graph is the complete graph. For a given estimate �̂ and conflict
graph Ĝ, we predict Ŵ t for St as follows. The mechanism serves members of St in order
according to �̂ (e.g, Loc(i, P t) < Loc(j, P t) will imply i gets served before j), subject to
the constraint that if j is in conflict with some earlier buyer who has won, j doesn’t win.
Then, there will be two types of mistakes: when W t includes some pair (i, j) connected
by an edge in Ĝ, and when it does not. In the first case, we can safely remove (i, j) from
Ĝ, and in the second case we will argue that we can safely demote some buyer. We will

maintain the invariants alluded to previously: namely, that E ⊆ Ê (for edges in the
conflict/current estimate graph), and that we have never demoted a buyer who didn’t
need to be demoted. Algorithm SingleMinded formalizes this intuition.

Algorithm SingleMinded: MB algorithm for predicting winners; single-minded
buyers wrt order �
P=InitPerm;
Let Ĝ = ([n], Ê) where (i, j) ∈ Ê for all i 6= j;
for t = 1 to T do

Receive St;
Let Ŵ t = ∅;
for b = 1 to |St| do

Let i = Buyer(b, St, P);
add i to Ŵ t if @j ∈ Ŵ t such that (i, j) ∈ Ê;

Predict Ŵ t;
Learn W t;
if W t 6= Ŵ t then

if ∃i, j ∈W t such that (i, j) ∈ Ê then
Ê = Ê \ {(i, j)}

else
Let it = Buyer(1, Ŵ t \W t, P);
P = Demote(it, P);

THM 3.1. SingleMinded is a 2n2-mistake bound algorithm for predicting W t, the
winning set for single-minded buyers.

PROOF. Throughout the life of the algorithm, two invariants are maintained. First,
the true set of edges in the conflict graph E will always be contained in Ê the set of
conflicts the algorithm tracks. Second, �̂ will only be told to push down a buyer i when
there is some j such that Loc(i,�) > Loc(j,�) but Loc(i, P t) < Loc(j, P t).

We proceed to show the first invariant holds. It begins with the complete conflict
graph Ĝ = ([n], Ê), so the invariant holds at the beginning. Whenever the algorithm
deletes an edge (i, j) from Ĝ, an example has been observed where two buyers are
clearly not in conflict (e.g., i and j are both allocated in some example).

Now, we prove the second invariant. This is clearly true when we push some i down
the first time; i doesn’t always win when he shows up, implying he isn’t at the first
level according to �. Now, suppose so far this has been the case: no buyer so far has
been pushed unless there was proof according to � that he is below someone below him
according to �̂t−1. Then, when it is asked to be pushed down, it is because it wasn’t
allocated to, even though �̂t−1 said he should have been. This isn’t because of conflicts,
by invariant 1, so it didn’t conflict with those above him according to �̂t−1. Moreover,
since it was the first person according to �̂t−1 where we made a mistake, it must conflict
with someone above him according to �, implying there is someone below him in �̂t−1

who he is below in �. Thus, the invariant is maintained after it is demoted.

Thus, by Lemma 3.1, using the permutation data structure is appropriate: it is never
told to push down some buyer who doesn’t need to be lower according to �, so the
algorithm is correct. Finally, there can be at most n2 edges deleted from the conflict
graph, and at most n2 times where some buyer is pushed down in the ordering. Thus,
the mistake bound on this algorithm is 2n2.

Thus, this is quite an effective way to interpret the observations of “satisfied” or
“not satisfied”: if the observation was actually the allocation (and the goal to predict
the allocation), the problem trivially reduces to the n2 bound from the single-item
case (it reduces to learning the priority of each buyer and seeing each buyer win one
time). If, on the other hand, the observations are simply the subset of those buyers
who are satisfied, and we aim to construct the smallest consistent model of the items
corresponding to the demanded sets, the problem becomes NP-complete.

OBSERVATION 3.2. Given a conflict graph G, finding the smallest m for which
single-minded bidders over m items suffices to describe the conflicts in G is equiva-
lent to clique edge-cover, and is thus NP-complete. On the other hand, there will always
exist a consistent set of at most n2 items: in particular, one item for each edge in G with
each player wanting all of its incident edges.

4. UNIT-DEMAND BUYERS
Suppose now our n buyers are unit-demand, and we wish to predict the allocation
rather than just the winning set. When prices are fixed, this problem corresponds to
each buyer having an ordering over items >i, as well as the ordering � over buyers. At
each time t, a subset St arrives, and the players in St, in order according to �, will each
choose their favorite item remaining. For example, the first buyer in St will choose his
favorite item, the second buyer will choose his favorite that the first buyer didn’t take,
and so on. By a reduction to the single-minded case, we have the following.

THM 4.1. There is an efficient O(n2m2)-mistake bound learning algorithm for pre-
dicting the allocation for subsets of buyers, according to an priority-ordered mechanism
with fixed prices and unit-demand buyers, when observations are true allocations.

PROOF. For each player i, makem “ghost” buyers i1 . . . im, one for each item j, which
will correspond to embedding i’s preferences into �. The true allocation mechanismM
can be viewed as an ordering of the mn ghost buyers (an ordering over buyers, and
within each buyer an ordering over items) where two ghost buyers are in conflict if
either they correspond to the same buyer or correspond to the same item. Now, con-
sider Algorithm SingleMinded. Since only one of the m copies of a given buyer will be
allocated to according to M, we will never delete conflict edges between these copies,
and will thus never predict two ghosts corresponding to the same true buyer will win
simultaneously. Similarly, for any item j, since the item will never simultaneously be
given to two buyers, we will never delete conflict edges corresponding to that item. Fi-
nally, for a player in position j according to �, no more than j of his ghost buyers will
ever be seen winning. Thus, at most j of his ghosts will need to be rearranged by �̂. In
total, then, there are only min(n2, nm) ghost buyers that are relevant. Then, there are
at most O(min(n4, n2m2)) mistakes, by Theorem 6.2.

We also briefly mention that we have a slightly tighter bound, whose proofs are rele-
gated to Section A.1.

THM 4.2. Algorithm UnitDemandPrime has a mistake bound of Θ(n2m log(m)) for
predicting allocations for subsets of unit-demand buyers, when the M is a priority-
ordered mechanism with fixed prices when the observation is the true allocation.

4.1. ki,t-demand
The previous results extend to cases where bidder i wishes to buy ki items, rather than
just 1, and chooses the top ki with respect to her ordering of the remaining available
items, even if the kis are not known in advance. The algorithm needs to maintain a
conservative estimate of each ki, so the initial estimate should be k̂i = 0 for all i. As
before, when we make a mistake, we will only update the first buyer (according to our
internal ordering over buyers) for whom our algorithm incorrectly predicted T rather
than S. There will now be 2 types of mistakes: where an agent buys a set S which
is superset of T , the k̂i items we predicted (in which case our algorithm should set
k̂i = |S|), and when an agent buys a set S when we predicted T and T \ S 6= ∅ (in
which case, we demote the first item in T \ S according to our internal ordering over
i’s items). The total mistake bound will increase by

∑
i ki. Similarly, if at each time t,

agent i desires ki,t items, and ki,t is part of the input, predicting that agent i will buy
her ki,t favorite items, with the same update rule, will yield the same mistake bound
as in the usual unit-demand case.

4.2. Multiple copies
Several of these results are easy to extend to the setting where there are multiple
copies of each resource, and players are unit-demand for multiple copies of a particular
item (e.g., no player wants more than one copy of a given item). If buyers are additive
(across bundles of different items), it suffices to learn their preferences over item types.
This can be done with no loss, treating any copy of a resource identically internal to
the learning algorithm. For prediction, a buyer will take his favorite bundle of items,
and that bundle can contain an item for which there is at least one copy remaining.
This implies a mistake bound for learning the allocations which is independent of the
number of copies of each item.

For unit-demand buyers, it is not clear how to use the solution from Theorem 4.1,
which reduces to the single-minded case (for buyer i to not have item e available,
there would need to be ke “ghosts” that bought item e prior to buyer i, rather than
a single conflict). However, Algorithm UnitDemandPrime can be used directly to learn
the permutation over buyers and each buyer i’s preference order over item types.

In the case of single-minded buyers, recall that the problem is quite easy if we ever
see an allocation; Corollary 3.2 applies directly with no loss in the mistake bound.
On the other hand, if no allocation is seen, and instead we only see the subset of
people who received their set, one can use a conflict hypergraph rather than a conflict
graph. The total number of edges in a necessary hypergraph blows up rather quickly,
unfortunately: the size of this representation (and thus the number of mistakes) will be
Θ(nk) where k = maxj∈[m] kj . Based on our previous observation about the complexity
of finding a minimal representation (in terms of items) consistent with the perceived
conflicts, even when there is only one copy of each item, we suspect this problem may
be inherent. We leave the question open of whether one can predict the winning sets
of single-minded buyers with a mistake bound and running time which is polynomial
in m,n and k (or even independent of k, for the mistake bound).

5. VARIABLE PRICES: ADDITIVE AND UNIT-DEMAND
The previous sections can be thought of simulating a simple mechanism: according to
the mechanism, buyers have priorities, and in order of priority, buyers will pick her
favorite bundle available. For single-minded buyers, the priorities could be thought of
as a sorting of buyers by their bid, or some other pecking order. A buyer’s preferences
could be thought of as an ordering according to value, or quasilinear utility according
to some fixed prices. We now consider a twist on our original setup: what if, rather than

the prices being fixed, each round was fed a price vector pt along with the subset St, as-
suming that buyers would now take a bundle to maximize their quasilinear utility with
respect to these varying prices? Assume, for simplicity, that pt ∈ {0, 1, . . . , V }m. Simply
running our previous mistake bound algorithm for unit-demand, additive, or single-
minded buyers is tantalizingly simple. However, as buyer’s preferences over bundles
changes with prices (and thus rounds), this approach fails miserably.

The algorithm which solves the fixed price problem for unit-demand buyers can be
thought of in a slightly different way, which will be useful for solving the problems with
variable prices. An equivalent solution to the problem is to start with a permutation
data structure P to learn the ordering over buyers, and for each buyer i, a permutation
data structure Pi to learn their preference ordering over items. Whenever a mistake is
made, the algorithm blames the subroutine which is learning some buyer’s preferences
(namely, the earliest buyer for which we made a mistake). If this causes their subrou-
tine to become infeasible, it must be the case that the buyer needs to be demoted
in the larger ordering, so we demote the buyer and restart their subroutine. Then,
the total mistake bound for the algorithm will be n2MB, where MB is the mistake
bound for the subroutines (because each buyer can be demoted at most n times, and
there are at mostMB mistakes for a buyer at each position). This intuition (running
a global algorithm with subroutines for each buyer’s preferences) is our starting point
for constructing mistake-bound learning algorithms for variable prices. We begin by
designing an algorithm for additive buyers, which gives some intuition for the case of
unit-demand. We assume, for simplicity, there are no ties for a buyer’s most-preferred
bundle at any set of prices. All results can be extended to allow ties assuming buyers
break ties consistently.

Additive. Suppose in each round t, our input is a subset of buyers present St and a
price vector pt. The algorithm A we are trying to simulate is composed of two parts, �,
a priority over buyers, and vi(j) for each buyer i ∈ B, and j ∈ I, corresponding to the
value buyer i has for item j. On a given subset and price vector pair, A will offer all
items to buyer i ∈ St who is first in �, who will take all items such that vi(j) > pt(j).
Then, the remaining items are offered to the remaining buyers i′ ∈ St, in order of �,
who will do the same.

Our algorithm will predict an allocation of item X̂t
1, . . . , X̂

t
n. If the allocation is wrong,

the correct allocationXt
1, . . . , X

t
n is shown to our algorithm. We wish, for arbitrary price

vectors and subsets, to minimize the total number of errors made.
The argument of correctness for Algorithm AdditiveVariable (below) is somewhat

more complex than in the previous sections. As before, we need to show that the algo-
rithm never tells P to push down a buyer when it should not. The condition for this is
slightly more complicated, however. That is, the infeasibility of the binary search for
vi(j) is proof that this buyer cannot be above all of the buyers below him according
to P . It is important that the first error according to Permutation(P) (and only this
error) is the one used to update the model: this avoids an earlier error in the ordering
Pt (or an error in an earlier binary search vi(j)) placing incorrect constraints on lower
buyers. To this end, let FirstMistake(X,X ′, P) denote the first i, according to P , for
which Xi 6= X ′i. Let V be the maximum valuation any buyer has for any item.

THM 5.1. Algorithm AdditiveVariable is an O(log(V)mn2) mistake-bound learning
algorithm for the problem of predicting subsets of quasilinear additive buyer’s pur-
chases according to � priority with prices pt.

Lemma 5.1 is the main component of Theorem 5.1; it takes the place of the invariants
used in the proof of Theorem 6.2, implying that no agent is demoted unless we are sure

Algorithm AdditiveVariable: MB algorithm predicting Xt
1, . . . X

t
n; additive buy-

ers under order �
P = InitPerm(n);
Let v̄i(j) = V ; vi(j) = 0;
For t = 1 to T :

Receive St, pt

Let X̂t
i = ∅; I ′ = [m]

Let v̂ti(j) =
v̄i(j)+vi(j)

2

for b = 1 to |St| do
// bth-ranked buyer of St

w.r.t P
Let i = Buyer(b, St, P)
Let Xt

i = {j ∈ [m]|v̂i(j) > pt(j)}
Let I ′ = I ′ \Xt

i

Predict X̂t
1, . . . , X̂

t
n

Learn Xt
1, . . . , X

t
n

if Xt 6= X̂t then
// index of first mistake

according to P

Let it = FirstMistake(Xt, X̂t, P);
if ∃j ∈ Xt

it∆X̂
t
it such that vit(j) = vit(j)

then
// ∃ item whose binary search

invalid

Demote(it, P), Let vit(j) = 0 and
v̄it(j) = V ;

else
// Update the binary searches.

for each j ∈ X̂t
it \Xt

it do
Set vit(j) = v̂it(j);

for each j ∈ Xt
it \ X̂t

it do
Set v̄it(j) = v̂it(j);

her current position is too high, and that we always make progress when a mistake is
made.

LEMMA 5.1. Let buyer it ∈ B be the first mistake in round t. Then, there exists some
item j ∈ I for which one of these statements holds:

(1) j /∈ X̂t
it , but j ∈ Xt

it , and v̂it(j) < vit(j)

(2) j ∈ X̂it

t , but j /∈ Xt
it , and v̂it(j) > vit(j)

(3) j ∈ X̂t
it , but j /∈ Xt

it , and there is some i′ such that Loc(P t, it) < Loc(P t, i′) but
Loc(�, it) > Loc(�, i′).

We relegate the proofs of Lemma 5.1 and Theorem 5.1 to Section A.2.

Unit-Demand. The case of unit-demand buyers is similar to that of additive buyers,
though the buyers will no longer have separable preferences over items: instead, out of
a set of available items T at prices pt, buyer i will buy j = argmaxj∈J [vi(j) − pt(j)] to
maximize his quasilinear utility (assume that there is some consistent tie-breaking in
the event that several items are equally good). So, rather than using binary search for
each item separately, for each buyer, we will run a mistake bound ellipsoid algorithm;
whenever a constraint is added, it will be of the form vi(j) − pt(j) > vi(j

′) − pt(j′),
where the vi(j)s are variables and the pt(j)s are constants coming from the online
price vectors.

THM 5.2. Algorithm UnitVariable is an O(n2MB)-mistake bound learner for unit-
demand buyers with respect to some order �, where MB is the online mistake bound
guarantee of the online classification algorithm.

The main theorem of this section follows from a similar analysis to that of additive
buyers in the previous section, with a twist stemming from the fact that we use the
Ellipsoid algorithm as the mistake-bound subroutine (with each mistake serving as its
separation oracle), rather than binary search for each item separately. This is similar

Algorithm UnitVariable: MB algorithm predicting Xt
1, . . . X

t
n; unit-demand buy-

ers, order �
P = InitPerm(n)

Let R̂i be an instance of ellipsoid alg. w. un-
knowns vi(j) for all i ∈ B, j ∈ I
For t = 1 to T :

Receive St, pt

Let X̂t
i = ∅ and I ′ = [m]

for b = 1 to |St| do
Let i = Buyer(b, St, P)
Let v̂i ∈ Rm be the center estimated
by R̂i

// prediction for i w.r.t.
prices, est. values, rem.
items

Let ĵi = argmaxj∈I′ v̂i(j)− pt(j)
if v̂i(ĵi)− pt(ĵi) > 0 then

Let Xt
i = {ĵi}

else
Let Xt

i = ∅
Let I ′ = I ′ \Xt

i

Predict X̂t
1, . . . , X̂

t
n

Learn Xt
1, . . . , X

t
n

if X 6= X̂ then
Let it =
FirstMistake(Xt, X̂t, P)
if Xt

it = ∅ then
Send constraint vit(ĵit) <

pt(jit) to R̂it

else
Let {jit} = Xt

it ; // The item
it actually won
if X̂t

it = ∅ then
Send constraint
vit(jit) > pt(jit) to
R̂it

else
Let X̂t

it = {ĵit}
Send constraint
vit(jit) − vit(ĵit) >

pt(jit)− pt(ĵit) to R̂it

if R̂it is infeasible then
Demote(it, P) and
restart R̂it

to the use of the Ellipsoid algorithm by Maass and Turán [1990] for learning a linear
separator. The proof of Theorem 5.2 can be found in Section A.2.

6. LOWER BOUNDS AND HARDNESS
Given the results in the previous section, it is natural to ask what mistake bounds
cannot be achieved for these problems. This section addresses this question: we show
information-theoretic lower bounds on the number of mistakes for several of these
problems. For the case of single-minded bidders, our lower bound is matching the mis-
take bound we prove for an efficient algorithm. For unit-demand bidders with fixed
prices, our lower bound is within a factor of n of the upper bound we have shown in
the previous section using an efficient algorithm. We mention a computationally in-
efficient algorithm which achieves the information-theoretic optimal mistake bound
, and leave it as an open question whether a polynomial-time algorithm can achieve
the same mistake bound. Finally, we show cryptographic hardness of a related prob-
lem. Suppose bidders are unit-demand, and for each bidder i has a set of satisfying
items, and our it is our goal to predict the set of agents who received one of their sat-
isfying items. When our algorithm makes a mistake, it is presented with the set of
satisfied agents, rather than the allocation. We show, by the reductions of Kearns and
Valiant [1994], this problem is at least as hard as several encryption problems which
are generally accepted as computationally hard problems, even in the average-case. We
now state our information-theoretic lower bound for predicting the winning bidders for
single-minded bidders.

THM 6.1. Suppose bidders are single-minded and we predict and observe only
which subset W t ⊆ St wins in round t. Then, when m ≥ n2, any online algorithm
can be forced to make Ω(n2) mistakes.

PROOF. Suppose there are n(n−1)
2 items (one for each pair of buyers). In each round

t, the adversary presents the algorithm with St containing a pair of buyers that has
never been presented before. The algorithm needs to predict whether one or both of
the buyers will be satisfied (guessing whether both buyers are both interested in their
“shared” item or not). Regardless of the algorithm’s choice, the adversary will say that
was a mistake: this yields a consistent set of conflicts and will force the algorithm to
make Ω(n2) mistakes.

On the other hand, there may be room for improving our unit-demand results. As a
warm-up, we first present an upper and lower bound for the single item case (where
we do have an efficient algorithm for the matching the upper bound).

THM 6.2. The problem of learning the allocation made by a priority-ordered mech-
anism with fixed prices and a single item has a mistake bound M = Θ(n log(n)), and
there is an algorithm with this mistake bound that runs in polynomial time.

PROOF OF THEOREM 6.2. For the lower bound, an adversary can present subsets
of size 2 and essentially simulate merge-sort. To start, for i = 1, . . . , n/2, the adversary
presents subset {2i− 1, 2i}, and tells the algorithm it has made a mistake (regardless
of its prediction), causing n/2 mistakes. In general, given n/L sorted lists of size L,
the adversary pairs the lists together and then for each pair runs through the merging
process (presenting the subset consisting of the top element in each list, telling the
algorithm it has made a mistake whatever its prediction is, and popping off the true
largest element). This maintains consistency with an overall ordering and creates at
least L mistakes per pair, or again n/2 mistakes total for the round. There are log(n)
rounds, leading to an overall lower bound of Ω(n log n).

We can construct a computationally efficiently algorithm which matches this
information-theoretic lower bound using two ideas. First, each mistake gives us a new
pair of agents (i, j) for which we learn i � j but Loc(i, P t) < Loc(j, P t) (the true winner
i has higher priority than every other i′ ∈ St, and in particular, the estimated win-
ner j). Second, Karzanov and Khachiyan [1991] given an efficient sampling algorithm
which samples uniformly a consistent linear extension of a partial order.

Then, consider the following prediction algorithm. Consider a new subset St. Take a
single sample �? using the algorithm of Karzanov and Khachiyan [1991], and predict
the winner is jt = Buyer(1, St,�?). If a mistake is made, and it is the winner, add
the set of constraints it � j for all j ∈ St to the partial order. We claim that each
constraint added to the partial order over the life of the algorithm is correct (they are
added because a mistake is proof of the constraint). Second, when a mistake is made,
the number of consistent linear extensions shrinks (multiplicatively) by at least 1

4 in
expectation. This fact follows from the fact that if there is some kt whose probability of
winning at time t is at least 1

2 (where this probability is taken over the set of consistent
linear extensions), there is probability at least 1

2 of our algorithm predicting kt. If kt
is incorrect, then all permutations where kt is first amongst St are inconsistent after
adding the new constraints, cutting the number of consistent linear extensions in half.
Another winner is predicted with probability at most 1

2 , and the set of linear extensions
only shrinks. Thus, by an analysis similar to the halving algorithm, after Θ(n log(n))
mistakes, there is only one consistent linear extension, and it is �.

The case of unit-demand buyers also has matching information-theoretic bounds.

THM 6.3. The problem of learning the allocation made by an priority-ordered
mechanism with fixed prices with over unit-demand buyers has a mistake bound of
Θ(mn log(m)) (assuming m = Ω(log(n))).

PROOF OF THEOREM 6.3. The lower bound for this problem is similar to the pre-
vious argument. The generalization uses n buyers, the first m of which are “dummy”
buyers and have favorite items a1, . . . , am. We can use these first buyers to control
which items are available for the true buyers. Then, each example St will contain
m−2 “dummy” buyers (who take all but just 2 items af , ag) and one true buyer i. Then,
the algorithm needs to decide which of af or ag the true buyer will select. This will
be repeated for each pair of items and each non-dummy buyer. Thus, the algorithm is
solving n−m separate instances of sortingm items (for each buyer), and so the problem
has a lower bound of Ω(mn log(m)) mistakes.

Without computational constraints, we can construct an algorithm with a matching
mistake bound for unit-demand bidders. The algorithm will maintain a list of consis-
tent permutations over buyers (and, for each of those permutations over buyers, the
consistent permutations for each buyer over items). Given a new subset St, the algo-
rithm predicts the most likely allocation (uniformly weighted). Since there are n!∗(m!)n

many initial hypotheses (an ordering over buyers and, for each buyer, an ordering over
items), the halving algorithm will makeO(n log(n)+nm log(m)) mistakes. It is not clear
how to make this algorithm computationally efficient without increasing the mistake
bound: unlike the single-item case, we have no clear culprit to our mistake. In the
single-item case, we can add another constraint to our partial order, generating a re-
fined partial order. In the unit-demand case, a mistake could be made either because
the understanding of some individual’s preferences are wrong, or because our ordering
over buyers was wrong.

Unit-demand bidders with acceptable items is hard. Finally, we show hardness for a
variant of the single-minded model (where we only observe which agents received their
demanded sets, not the allocation itself). Suppose, rather than agent i being single-
minded with demand set Di, agent i is unit-demand, with preference order �i and an
acceptable set Di. If agent i is offered a set of items I, they will pick the item j ∈ Di ∩ I
(if the intersection is nonempty) which is best according to �i. If agent i receives any
item j ∈ Di, we will say agent i is satisfied. Our goal is to predict the satisfied set W t

from St, the set of agents who arrive at time t. If a mistake is made, the algorithm is
presented with the correct satisfied set (rather than the actual allocation). We call this
problem the unit-demand satisfaction prediction problem.

THM 6.4. Weakly-learning general boolean formulae of size n is polynomial-time
reducible to the unit-demand satisfaction problem.

We sketch a proof of Theorem 6.4 (a formal proof is in the full version of this paper).

PROOF SKETCH. One can encode a boolean formula (in its binary tree representa-
tion with and/or gates as internal nodes, and the leaves are inputs to the formula, the
root’s value is the value of the formula evaluated on its leaves) into an instance of the
problem of predicting the set of satisfied unit-demand buyers. The intuitive correspon-
dence is that each node will correspond to an item: that node will evaluate to true if
and only if the corresponding item isn’t chosen by some agent.

Each leaf node in a boolean formula will have a corresponding agent and item (that
agent wants exactly that item). Each AND gate will introduce four bidders and four
items. Two of the buyers each prefers one of two “input” items to the AND gate, then
one of the non-input items associated with the gate. The other two buyers are each
satisfied by only one of the non-input items corresponding to the gate; the preference

ordering gives higher priority to the first two buyers. These latter two buyers will be
satisfied if and only if both inputs to the AND gate were true. Each OR gate introduces
two additional bidders and three items; the first agent will choose either of the input
items, then the third non-input item; the other bidder is satisfied only by the non-input
item. If at least one of the input items is available, both agents will be satisfied.

Thus, by the reduction of Kearns and Valiant [1994], there is a polynomial p(n)
such that inverting the RSA encryption function, recognizing quadratic residues, and
factoring Blum integers are probabilistically polynomial-time reducible to the unit-
demand satisfaction problem.

7. DISCUSSION
In this paper we present algorithms that from observations of opaque transactions
(observing just who wins and who doesn’t in the case of single-minded buyers, or ob-
serving the allocations produced in the case of additive or unit-demand buyers) can
reconstruct both the preferences of the buyers and the mechanism used by the seller
sufficiently well to predict the outcomes of new transactions. We focus on priority-
based ordered priority mechanisms on the side of the seller, and commonly-studied
classes of valuation functions for the buyers. It would be interesting to consider this
problem in the context of other mechanisms and other observation models as well.
Note that for mechanisms such as VCG (producing a social-welfare-maximizing allo-
cation) certain complications arise: for instance even in the case that all buyer valu-
ations are known, finding the allocation produced can be NP-complete if buyers are
single-minded. Therefore, if one wishes to solve the prediction problem with efficient
algorithms, it is necessary to consider settings where the problem of computing the
allocation with full knowledge of the mechanism and preferences is polynomial time.

REFERENCES

AMIN, K., CUMMINGS, R., DWORKIN, L., KEARNS, M., AND ROTH, A. 2014. Online learning
and profit maximization from revealed preferences. arXiv.

BALCAN, M.-F., DANIELY, A., MEHTA, R., URNER, R., AND VAZIRANI, V. V. 2014. Learning
economic parameters from revealed preferences. arXiv abs/1407.7937.

BEIGMAN, E. AND VOHRA, R. 2006. Learning from revealed preference. In Proceedings of the
7th ACM Conference on Electronic Commerce. ACM, 36–42.

HELMBOLD, D., SLOAN, R., AND WARMUTH, M. K. 1990. Learning nested differences of inter-
section closed concept classes. Machine Learning 5, 2, 165–196. Special Issue on Computa-
tional Learning Theory; first appeared in 2nd COLT conference (1989).

KARZANOV, A. AND KHACHIYAN, L. 1991. On the conductance of order markov chains. Or-
der 8, 1, 7–15.

KEARNS, M. AND VALIANT, L. 1994. Cryptographic limitations on learning boolean formulae
and finite automata. Journal of the ACM (JACM) 41, 1, 67–95.

MAASS, W. AND TURÁN, G. 1990. How fast can a threshold gate learn? International Computer
Science Institute.

SAMUELSON, P. A. 1938. A note on the pure theory of consumer’s behaviour. Economica, 61–71.
VARIAN, H. R. 2006. Revealed preference. Samuelsonian economics and the twenty-first century,

99–115.
ZADIMOGHADDAM, M. AND ROTH, A. 2012. Efficiently learning from revealed preference. In

Internet and Network Economics. Springer, 114–127.

A. MISSING PROOFS
A.1. Improved algorithm for unit-demand bidders

PROOF OF THEOREM 4.2. We describe how to efficiently implement an approximate halving
algorithm for learning permutations consistent with a partial order in Section 6. If it is the first
mistake, either the estimate of it’s preferences are incorrect (in which case jit �it ĵit , and we add

Algorithm UnitDemandPrime: Predicts allocation of order-based allocation rule
for unit-demand players

P = InitPerm(n)
for i = 1 to m do

Let �̂i be an instantiation of the apx.
halving alg. (Section 6) for learning �i

over [m]

For t = 1 to T :
Let I = [m], receive St

for b = 1 to |St| do
Let i = Buyer(b, St, P)
// the predicted choice of item

by i

Let ĵi = Buyer(1, I, �̂i)

Let X̂t
i = {ĵi} and I = I \ {ĵi}

Predict X̂t

Learn Xt

if Xt 6= X̂t then
// ind of first error

w.r.t. P
Let it =
FirstMistake(Xt, X̂t, P)
Let {jit} = Xt

it

Give the constraint jit �it ĵit
to �̂it

if �̂it is infeasible then
Demote(it, P)
Reset �̂it

this constraint), or it needs to be demoted. Once �̂it becomes infeasible, all constraints added
were valid, so demoting it is valid.

A.2. Improved Prices

PROOF OF LEMMA 5.1. A mistake implies there is some item j such that j /∈ X̂t
it but j ∈ Xt

it ,
or j ∈ X̂t

it but j /∈ Xt
it . Consider the first case. Our algorithm did not give item j to buyer it:

moreover, it didn’t give item j to some buyer i′ with higher priority (Loc(P t, i′) < Loc(P t, it)),
since buyer it was the first mistake, implying our estimate of buyer it’s value for item j was too
low, which falls into case 1. If, on the other hand, our algorithm allocated item j to buyer it, but
buyer it was not awarded item j, then either buyer it’s value for item j is less than the price
(and our estimate v̂it(j) was too high, implying case 2), or some buyer i′ with higher priority
w.r.t � took item j before buyer it. In this case, since buyer it was the first mistake, this implies
Loc(P t, it) < Loc(P t, i′) but Loc(�, it) > Loc(�, i′), implying case 3.

LEMMA A.1. Using the ellipsoid algorithm to learn the collection {vi(j)}j has a mistake
bound of O(m2(K + logm)) so long as each mistake returns a constraint such that its current
hypothesis v̂i is no longer feasible, where K is the maximum precision of the vis.

PROOF. We will have m variables corresponding to the valuations of buyer i to each of the
m items. The Ellipsoid algorithm maintains an ellipsoid that contains the feasible region (the
possible m-tuples of valuations consistent with observations so far) and proposes as its current
hypothesis the center of that ellipsoid.

We use this center as a proposed valuation for buyer i until we make an error involving her.
Once we make an error we identify a violated linear constraint, and we return it to the Ellipsoid
algorithm, which then updates its ellipsoid and hypothesis.

In each iteration (mistake of the algorithm) the volume shrinks multiplicatively by a fraction
of 1− 1

m
. The initial volume is at most 2O(m(K+logm)). The final volume, assuming that there is a

consistent valuation, is at least 2−O(m(K+logm)). This implies that after at most O(m2(K+logm))
errors we reach a volume which is too small, and therefore there is no feasible valuation.

We now state the analog to Lemma 5.1 for the unit-demand case.

LEMMA A.2. Suppose the unit-demand algorithm makes a mistake at time t. Let it be the
first mistake (according to �̂t). Let ĵit be the item we predicted it to win (if any) and jit the item
it won (if any). Then one of these holds:

(1) vit(ĵit)− pt(ĵit) < 0 < v̂it(ĵit)− pt(ĵit), or vit(ĵit) < v̂it(ĵit)

(2) vit(ĵit)− pt(ĵit) < vit(jit)− pt(jit)

(3) vit(jit) > v̂it(jit)

(4) ĵit was not available (∃i′ s.t. Loc(P t, it) < Loc(P t, i′) but Loc(�, it) > Loc(�, i′)).

PROOF. Consider a mistake on buyer it. Either it is the case that (a) it bought nothing and
we predicted she bought something, (b) she bought something and we predicted nothing, or (c)
we predicted the wrong item.

(a) occurs only when ĵ was no longer available (it needs to be demoted, case 4) or ĵ was too
expensive, vit(ĵ) − pt(ĵ) < 0 (case 1). (b) can only occur because our estimate of her value of an
item was to small (case 3), since she is the first mistake it cannot be because we predicted that
someone earlier took j. (c) occurs when either ĵ was not available (and i needs a demotion, case
4) or our estimate of utility was wrong (case 2).

PROOF OF THEOREM 5.2. We claim the same two invariants are true of Algorithm Unit-
Variable as were true of Algorithm AdditiveVariable, since Lemma A.2 provides the analogous
guarantees (namely, that when we make a mistake, we either get to add a constraint to some
ellipsoid algorithm, or we get to demote some buyer). Thus, the algorithm is correct. Each in-
stantiation of the ellipsoid algorithm makes at mostMBmistakes before we demote and restart,
and there are at most n2 demotions total. Thus, at mostMBn2 mistakes in total are made.

Now, we prove Theorem 5.1.

PROOF. As in previous proofs, we show our algorithm maintains two invariants:

(1) For any buyer i, for each item j, at each time t, the binary search for vi(j) has been given only
accurate upper and lower bounds for any permutation �′ such that i has not been demoted
in �′ from �̂t (some other buyers may be demoted). So, if buyer i’s precedence does not
decrease, any vi(j)s consistent with �′ and the observations are consistent with the binary
searches and �̂t.

(2) Any it demoted in Pt has some i′ s.t. Loc(P t, it) < Loc(P t, i′) but Loc(�, i′) < Loc(�, it).
We begin with the first invariant. It is satisfied prior to any constraints being added to any

buyer’s binary searches. Now, suppose it is true until time t: all constraints are accurate w.r.t
�̂t and any �′ such that i has not been demoted from �̂t to �′ but other buyers may have been
demoted. If, at time t, i gets another constraint added to her binary searches, this implies either
this constraint is correct or buyer i needs to be demoted, by Lemma 5.1. Thus, if buyer i is not
demoted (as is the case for �′), this new constraint (and so all the constraints) in her binary
searches are valid.

Now, we prove the second invariant. The invariant is true at the beginning of the algorithm
prior to any buyer being pushed downwards. Now, consider some time t, and assume this in-
variant holds until time t. The only case of interest is when one of buyer it’s binary searches is
infeasible and she is demoted.

Due to invariant 1, we know that all the constraints buyer it has received until time t are
valid at her position in �̂t (or any earlier position), since buyer it’s binary searches are reset
whenever buyer it is pushed down. Since she is the first mistake, by Lemma 5.1, it is either the
case that the current constraint being added is true with respect to her vit(j)s and her position
(or an earlier position), or she must occur later in the ordering. Thus, all the constraints in
her binary searches are correct with respect to her current position (or any earlier one) in the
ordering. Since there are some vit(j)s which are consistent with the observations, but not the
set of constraints, it must be the case that buyer it occurs later in the ordering.

Now, we show the mistake bound. If a mistake is made, some buyer it either updates her
binary searches or is demoted. At most log(V) binary search updates can occur for a given item
and buyer before the binary search becomes infeasible and she is demoted. Thus, there can be
at most m log(V) mistakes resulting in binary search updates for a buyer before she is demoted.
By Lemma 3.1 and invariant 2, no buyer is pushed later in the ordering than she occurs in �;
thus, there are at most n2 mistakes resulting in demotions. Thus, in total, there are at most
n2m log(V) many mistakes.

	Introduction
	Our Results
	Related Work

	Model and Preliminaries
	Single-Minded Buyers
	Unit-demand buyers
	ki,t-demand
	Multiple copies

	Variable prices: additive and unit-demand
	Lower Bounds and Hardness
	Discussion
	Missing Proofs
	Improved algorithm for unit-demand bidders
	Improved Prices

