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In settings with incomplete information, players can find it difficult to coordinate to find states with good
social welfare. For example, in financial settings, if a collection of financial firms have limited information
about each other’s strategies, some large number of them may choose the same high-risk investment in
hopes of high returns. While this might be acceptable in some cases, the economy can be hurt badly if many
firms make investments in the same risky market segment and it fails. One reason why many firms might
end up choosing the same segment is that they do not have information about other firms’ investments
(imperfect information may lead to ‘bad’ game states). Directly reporting all players’ investments, however,
raises confidentiality concerns for both individuals and institutions.

In this paper, we explore whether information about the game-state can be publicly announced in a man-
ner that maintains the privacy of the actions of the players, and still suffices to deter players from reaching
bad game-states. We show that in many games of interest, it is possible for players to avoid these bad states
with the help of privacy-preserving, publicly-announced information. We model behavior of players in this
imperfect information setting in two ways – greedy and undominated strategic behaviours, and we prove
guarantees on social welfare that certain kinds of privacy-preserving information can help attain. Further-
more, we design a counter with improved privacy guarantees under continual observation.

1. INTRODUCTION
It is widely accepted that one cause of financial crises is many players (such as in-
vestment banks) making risky and highly correlated investments. In some cases, this
concentration of risk can be intentional—all players believe that these actions will be
profitable, even knowing how crowded the market has become—but in other cases this
clustering appears to be due to a lack of information1. Researchers at federal agen-
cies are actively investigating methods to publish useful information about the state
of markets in the hope of diffusing future crises (e.g. Oet et al. [2012]). Even though
regulators have access to detailed confidential information about financial institutions
and (indirectly) individuals, current statistics and indices are based only on public
data, since disclosures based on confidential information are restricted. However, fore-
casts based on confidential data can be much more accurate2, prompting regulators
to ask whether aggregate statistics can be economically useful while also providing
rigorous privacy guarantees [Flood et al. 2013]. Suppose that a clearinghouse agency
indeed had information about the different actions made by players so far: could it,
in a way that preserves privacy of the actors, release enough information to help avoid
disastrous outcomes?

In this paper, we consider an online, multi-agent decision-making setting in which
we can pose and formally analyze this question. In this setting, a clearinghouse agency
may publish differentially private information about actions of agents so far, with a
goal of improving social welfare or, at the very least, avoiding disastrous sequences of
decisions. While we use the financial setting to motivate our research question, the

1For example, the Financial Crisis Inquiry Commission [2011, p. 352] concludes that, “The OTC derivatives
market’s lack of transparency and of effective price discovery exacerbated the collateral disputes of AIG and
Goldman Sachs and similar disputes between other derivatives counterparties.”
2For example, Oet et al. [2012] compared an index based on both public and confidential data with an
analogous index based only on publicly available data. The former index would have been a significantly
more accurate predictor of financial stress during the recent financial crisis (see Oet et al. [2011, Figure 4]).
See Flood et al. [2013] for further discussion.
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question itself is relevant in many contexts as illustrated by some of the related work
(discussed further in Section 3).

1.1. An illustrative setting
Consider the following abstract financial decision-making model. There is a set of m
“markets” or “resources” (conceptually, view these as nodes on the right-hand-side of a
bipartite graph) and n players (view these as nodes on the left-hand-side of a bipartite
graph) who will arrive online, one at a time. Each player i has some set Ai of allowable
actions to choose from, known only to that player. In the simplest case, Ai will be just
a set of markets (equivalently, a set of edges incident to player i in the bipartite graph)
and the action of player i will be just to choose one market in Ai; more generally, Ai
will be a set of “investment portfolios” available to player i, where each investment
portfolio is itself some (potentially fractional) allocation among the markets.

The players make their investment choices in some arbitrary sequential order. Sup-
pose each market r has some non-increasing function vr : Z+ → R+ indicating the
value, or utility, of this market to the kth player who chooses it. For example, one might
have vr(k) = vinitr /kp, for p > 0, where vinitr is the initial value of market r, so that the
value of market r to new players rapidly drops as a function of the number of players
who have chosen it so far3.

Let us consider the game-play under two extreme information settings.

(1) Perfect information: In this setting, if each player i has perfect information about
the investment choices made by the players before her, the optimal action for player
i is to greedily select the action in Ai of highest utility based on the number of
players who have selected each market so far. Moreover, it is not hard to show that
if players behave in this manner, this will result in total social welfare within a
factor of 2 of social optimum.4

(2) No information: Suppose, however, that the player i has no information about the
investment choices made by earlier players. In addition, she does not know what
markets other players are interested in and even how many players have played so
far. The only information she has is her set Ai and knowledge of the functions vr. In
this no information case, some particularly disastrous sequences of actions might
reasonably occur, leading to very low social welfare. For example, suppose each Ai
contains markets r and r′, with vr(0) = 1, vr(k) = 0 for all k ≥ 1, but vr′(k) = 1/2
for all k. Without additional information, players might reasonably choose greedily
according to vr(0), vr′(0), selecting the market of higher initial value. This would
give social welfare of 1, whereas the optimal assignment would give n/2 + 1/2. 5

Even worse, suppose each Ai contains one market ri with vinitri = n − 1 and r with
vinitr = 1, and each market behaves as vq(k) = vinitq /k for all k, q. If each player
believes (incorrectly) that the high-value market is shared and has already been
chosen by all the n− 1 other players, and so chooses the low-value market. In this
case, if in fact it is only the low-value market that is shared, the total social welfare
will be approximately lnn when it could have been Ω(n2).

As the above example illustrates, having information about the current state of the
system can be important to achieving a good social welfare. Suppose that a clearing-
house agency were able to collect such information about the actions taken by players

3In Section 6, we consider the setting in which payoff is affected also by actions of future players.
4Please see Section 5 for details.
5One can think of this scenario as a case where each player i has a bank account r′ and is tempted by an
investment r that offers the potential to double his money. However, if all players choose it, only the first
one actually doubles his money, and the rest lose all their net worth.
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so far, but it was required to satisfy strict privacy conditions on any data it published.
Could it avoid the above kinds of disastrous event sequences? More specifically, the
question we consider is:

If a clearinghouse agency can only post differentially-private6 information
about the actions of players, can this suffice to provide strong guarantees on
social welfare?

What we show is that in a quite general sense, the answer to the above question is yes.
In fact, in some cases, providing private information can achieve social welfare that ex-
ceeds even the full information setting (see Section 8.3). The central agency need only
observe actions taken by players over time and post differentially private estimates
of the current usage of each resource. Furthermore, we design new privacy-preserving
counter mechanisms that are particularly well-suited for this task, combining addi-
tive and multiplicative guarantees in order to be especially accurate when we need
accuracy most.

To help analyze game dynamics, we consider two models on player behavior:

(1) Greedy behavior: here we assume players act greedily, selecting the highest-
utility action according to the estimates (recall that this would be optimal behavior
if the estimates were perfect, so this is natural behavior to consider), or

(2) Behavior in undominated strategies: here we make only the minimal assump-
tion that players will not choose dominated actions (if action a is guaranteed to be
worse than action b in all states that are possible given the information provided,
then action a will not be chosen) and consider the worst-case sequence of actions
subject to this mild constraint.

We prove strong guarantees on social welfare under differentially-private informa-
tion for both models (stronger, of course, for greedy behavior, which is a specific undom-
inated strategy). Note that positive worst-case guarantees for undominated strategies
(worst-case over the sequences of sets Ai and over the undominated strategies chosen)
imply that even players with wildly inaccurate beliefs will produce good social welfare.
One could also imagine less pessimistic models such as Bayes Nash equilibria. We dis-
cuss these other possibilities in Section 9. Furthermore, as discussed in more detail
in the same section, we note that, while the privacy-preserving information provided
to the players will give the approximate usage of each resource and this the players
shall use to choose their action, it not necessarily the case that the value received by
each player will be close to what that she could received had she been given exact us-
age estimates, i.e., approximate usage estimates do not imply approximately optimal
investment decisions.

2. STATEMENT OF MAIN RESULTS
For the sequential resource-sharing games that was described above, we prove that
with privacy-preserving information and under the greedy strategy, the competitive ra-
tio7 is bounded and is polylogarithmic in the number of players. These results should
be contrasted with the results on perfect information and no information cases dis-
cussed briefly in the introduction and in more detail in Section 5. For undominated
strategies, we also prove a polylogarithmic guarantee for resource-sharing games
whose values drop at a polynomial rate (v(k) = vinit/kp rate for constant p > 0), but
show that if values may drop arbitrarily fast then the competitive ratio is unbounded.
Resource sharing games have the property that the utility of a player depends on her

6Differential privacy [Dwork et al. 2006] is a well-studied and strong formal privacy notion, see Section 4.
7We use the usual definition of competitive ratio; for a formal definition, see Section 4
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action and only the actions taken by previous players in the sequence. To understand
how crucial this is, we consider market sharing games and a generalization of them
where players’ utilities also depends on actions taken by future players (Section 6).
While market sharing games allow for a logarithmic competitive ratio with greedy
strategies, their generalization do not have allow for a bounded competitive ratio even
with greedy strategies. Certain classes of valuation functions that decrease gradually
have a bounded competitive ratio.

The key privacy tool we use is the differentially private counter under continual ob-
servation [Dwork et al. 2010]. Incorporating these counters into the sequential games
maintains the privacy of the players’ information, and we show that compared to the
case of having exact (non-private) counters, the degradation in the competitive ratio
for the resource sharing game is polylogarithmic in the number of players. In addition,
we also improve upon the existing error guarantees of differentially private counters
and design a new differentially private counter in Section 7. The new counter provides
a tighter additive guarantee at the price of introducing a constant multiplicative error.

In Sections 8.1, 8.2, and 8.3, we consider other classes of games – specifically, we
analyze Unrelated Machine Scheduling, Cut, and Cost Sharing games. The work of
Leme et al. [2012] showed these games have improved sequential price of anarchy over
the simultaneous price of anarchy. For these games, we ask the question: if players do
not have perfect information to make decisions, but instead have only noisy approx-
imations (due to privacy considerations), does sequentiality still improve the quality
of play? We prove that the answer is affirmative in most cases, and furthermore, for
some instances, having differentially-private information dissemination improves the
competitive ratio over perfect information (Proposition 8.8).

Of independent interest, we show an extension of the well-known 2-approximation
which greedy achieves for online vertex-weighted matching. We show that the greedy
algorithm 4-approximates OPT for a general class of many-to-one vertex-weighted
matching settings. Suppose nodes on the left arrive online, with allowable subsets of
nodes on the right-hand side of the graph. If these sets are downwards closed (e.g.,
that a player allowed to take a set S implies they are allowed to take any S′ ⊆ S), then
Greedy is a 4-approximation to OPT . See Section A for details.

3. RELATED WORK
A great deal of work has been done at the intersection of mechanism design and pri-
vacy; Pai and Roth [Pai and Roth 2013] have an extensive survey. While the survey
exhaustively covers the research work at the intersection of the two areas, we list here
a few key connections. One line of work has employed techniques from differential
privacy to design incentive compatible mechanisms (for e.g., [McSherry and Talwar
2007; Nissim et al. 2012b]). More recently, differential privacy has been considered as
a constraint, and incentive compatible mechanisms that satisfy this constraint while
optimizing an objective function have been designed [Huang and Kannan 2012; Xiao
2013]. In other work, the utility function of agents have been redesigned to incorporate
privacy concerns, and mechanisms for the redesigned utility functions have been con-
structed [Chen et al. 2013; Ghosh and Roth 2011; Roth and Schoenebeck 2012; Ligett
and Roth 2012; Fleischer and Lyu 2012; Nissim et al. 2012a].

Our work is similar to some of the previous work in that it considers maintaining
differential privacy to be a constraint. The focus of our work however is on how use-
ful information can be provided to players in games of imperfect information to help
achieve a good social objective while respecting the privacy constraint of the players.
The work of Kearns et al. [2012] is close in spirit to ours. Kearns et al. [2012] consider a
game where players have incomplete information, and provide a mechanism that helps
implement an equilibrium by collecting the information from the players and provid-
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ing them suggestions on what actions to take. The mechanism is designed so that it
is incentive compatible for the players to participate in the mechanism, and to follow
its suggestions. Other related work includes that of Rogers and Roth [2013], which
shows how to privately compute approximate Nash Equilibria in congestion games.
In the context of interactive mechanisms, other work [Hsu et al. 2013] shows how to
privately compute approximate Walrasian equilibria.

Another piece of work that is relevant to us is that of Leme et al. [2012]. While the
paper focuses on bringing out the differences between sequential and simultaneous
versions of certain games, their work can also be reinterpreted to be asking how pro-
viding complete information about the state of the game can help players achieve a
good social objective in sequential games. The work examines the quality of the Nash
equilibrium when players play sequentially and contrasts it to the case when the same
game is played simultaneously. The main message of the work is that in certain games,
playing sequentially with complete information helps the social objective as the play-
ers playing later keep in mind the moves made by the earlier players. In our work,
we consider some of these games; however, our results highlight the games in which
the information provided to the players is made differentially private either allows for
improvement over simultaneous PoA or does not.

As mentioned in the introduction, one class of player behavior under which we an-
alyze the games is greedy. Our analysis of greedy behavior is in part inspired by the
work of Balcan et al. [2009], who study best response dynamics with respect to noisy
cost functions for potential games. They ask: if players begin at some initial state,
how much can the social welfare degrade after a sequence of best-response moves
made with respect to noisy or slightly perturbed costs? A notable distinction between
their setting and ours, however, is that the noisy estimates we consider (and that
differentially-private counters provide) are estimates of state, not value, and may for
natural value curves be quite far from correct in terms of the values of the actions 8.

In a later section of this paper, we consider the case where players’ utilities depend
on the actions of all other players. These games are a generalization of market-sharing
games9. Previous work [Goemans et al. 2004] shows the Price of Anarchy of market-
sharing is 2, that players selecting β-approximately greedily in a single round of best-
response dynamics achieve a competitive ratio of Θ((β + 1) log(n)). Market-sharing
games are a special case of congestion games, whose price of anarchy has been studied
extensively [Christodoulou and Koutsoupias 2005a,b; Roughgarden and Tardos 2004;
Roughgarden 2003; Suri et al. 2007], and where greedy strategies have been shown
to have constant competitive ratio in special cases [Suri et al. 2007; Awerbuch et al.
1995].
4. PRELIMINARIES
4.1. Game Model
Consider the setting in which there are m resources and n players. An action ai of
player i is of the form (ai,1, . . . , ai,m), where ai,r represents the amount that player i
‘invests’ in resource r. We denote by Ai the set of all possible actions ai that player
i can take. The players will arrive one at a time, in an order σ : [n] → [n] which is
adversarially chosen. Suppose, for ease of exposition, we rename players such that
player i is the ith to arrive. For simplicity, we first assume that all ai,r ∈ {0, 1} (for the
continuous version, see Section D).

8Having a ‘good’ estimate for x does not necessarily imply a ‘good’ estimate of v(x) for many natural value
curves v(·).
9In the case of market-sharing, a market r has a fixed value vr , which is shared equally amongst players who
service the market; we present a generalization of these games. Players can fractionally service markets,
and for the restrictions on collections of markets can be arbitrary rather than budgetary.
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We consider two classes of utility functions for the players.

(1) Resource Sharing: In this setting, the utility to a player of choosing a cer-
tain resource is a function of the resource and (importantly) only of the num-
ber of players who have invested in the resource before her. In this case, each
resource r has some non-increasing function vr : Z+ → R+ with vr(k) indicat-
ing the value, or utility, of this resource to the kth player who chooses it (more
generally, if we allow choosing resources with fractional allocations, we will have
vr : R+ → R+). Let xi,r =

∑i−1
j=1 aj,r for each r. Then, the utility of player i is

ui(ai, a1,...,i−1) =
∑
r ai,rvr(xi,r),

(2) Future dependent setting: Here the utility to a player of investing in a par-
ticular resource is a function of the total number of players who have chosen that
resource, including those who have invested after her. In this case, if k players have
invested in the resource, each of them receive vr(k) utility. The utility of player i is
then ui(a1, · · · an) =

∑
r ai,rvr(xn,r) with xn,r =

∑n
j=1 aj,r for each r.

4.2. Information Model
Privacy-preserving public announcements: We will be interested in designing an-
nouncement mechanisms Mi which can intuitively be thought of as giving some in-
formation about actions made by the previous players to player i. Furthermore, we
will not assume that players have any other knowledge about either the game play or
the types and the strategies of the other players. 10

Mechanism Mi : ([0, 1]m)
i−1 × R → H (for H some output space) can depend upon

the actions taken by players until timestep i (but not the types of any players), and
potentially on internal random coins R. When player i arrives, mi(a1, . . . , ai−1) ∼
Mi(a1, . . . , ai−1) will be publicly announced. Player i plays according to some strategy
di : H → Ai unknown to the announcement mechanism. She applies di to the an-
nouncement when it is her turn to choose her action ai = di(m1, . . . ,mi(a1, . . . , ai−1)),
a random variable that is a function of this announcement. When it is clear from con-
text, we will denotemi(a1, . . . , ai−1) bymi. We now define an (ε, δ)-differentially private
announcement mechanism.

Definition 4.1. An announcement mechanismM is (ε, δ)-differentially private un-
der adaptive11 continual observation in the strategies of the players if, for each player
i, each pair of strategies d, d′i, and every subset S of events in the output announcement
space Hn:

P[(m1, . . . ,mn) ∈ S] ≤ eεP[(m1, . . . ,mi,m
′
i+1 . . . ,m

′
n) ∈ S] + δ

where mj ∼ Mj(a1, . . . , aj−1) and m′j ∼ Mj(a1, . . . , ai−1, a
′
i, a
′
i+1, . . . , a

′
j−1). Here

aj = dj(m1, . . . ,mj), and a′i = d′i(m1, . . . ,mi), and for all j > i, a′j =
dj(m1, . . . ,mi−1,mi,m

′
i+1, . . . ,m

′
j).

In other words, we require that in the two worlds differing in a single player chang-
ing her strategy from di to d′i, the joint distribution all the players’ announcements
(and thus their joint distributions over actions) should be statistically close. Note that
the distribution of each person’s announcement after i may change slightly, causing
their actions to change slightly; this necessitates the cascaded m′j , a

′
j for j > i in our

definition.

10If players have any additional information, they are free to use it while making their choice in the case of
undominated strategies.
11Adaptivity is needed in this case because the announcements are arguments to the actions of players:
when a particular action changes, this modifies the distribution over the future announcements, which in
turn changes the distribution over future selected actions.
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Privacy-preserving public announcement mechanism used in the paper: Our an-
nouncement mechanism will maintain a differentially private counter for each re-
source r. We will refer to this set of counters as counter vector. The counter vector will
(approximately) track the amount of use that the resources have received over time.
The values of all the counters in the counter vector are publicly announced throughout
the game play. They will guarantee privacy of the players under adaptive continual
observation as defined in Definition 4.1. Each player observes the current values of
these counters when she makes her decision to invest in the various resources. Since
a counter vector will need to maintain differential privacy while giving out close es-
timates of the usage, we now define what we mean by accuracy of a counter vector.

Definition 4.2. The counter vector will be defined to be (α, β, γ)-accurate if with
probability at least 1 − γ, at all points of time, the displayed value of all the counters
yi lies in the range [xiα − β, αxi + β] where xi is the true count for resource i 12.
We will refer to (α, β, 0)-accurate counter vector as (α, β)-counter vector for brevity.13

(It is possible to achieve γ = 014, taking an appropriate loss in the privacy guarantees
for the counter (Proposition 7.4).)

To help contrast the dynamics of the game with differentially private counters, we
will additionally analyze the game under two extreme settings of counters. With perfect
counters, the counter for each resource, at all points in time, displays the exact count of
the number of players who have chosen the resource. With empty counters, the players
are provided no information regarding how many players have chosen a particular
resource. For ease of exposition, we assume empty counters are identically 0 always
(and for the analysis of greedy behavior, this is equivalent to assuming players choose
according to vr(0)).

To summarize, we will consider 3 sorts of announcements: perfect counters, empty
counters, and (ε, δ)-privacy preserving (α, β, γ)-accurate counter vector. By perfect
counters, we mean, mi(a1, . . . , ai−1) = (xi,1, · · · , xi,m); empty counters means that
mi(a1, . . . , ai−1) = ~0; and differentially private counter vector mi(a1, . . . , ai−1) =
(si,1, · · · , si,m) ∈ [0, n]m where si,r ’s are approximations to xi,r ’s. An implementation
of an (α, β, γ)-accurate counter vector that is (ε, δ)-differentially private is discussed in
Section 7.
4.3. Players’ Behavior
Since we consider game play with incomplete information, we need to describe the
strategy space of the players. We will analyze the game play under two classes of
strategies – greedy and undominated strategies. We assume that the value functions
vr for all r are known to all players.

(1) Greedy strategy: Under the greedy strategy, a player chooses the resource that
maximizes her utility given the currently displayed (or announced) values of
the counters15. This means that when player i gets her turn to play and say,
mi(a1, · · · , ai) is (si,1, · · · , sm,i), she picks the resource r with largest vr(si,r). Such
a player has no outside information or belief about the game or the types and the
strategies of the other players.

12The counter we define has this hold for a collection of m counters simultaneously; with probability 1− γ,
all counters will be within their appropriate range.
13We note that, for our results regarding greedy play, a tradeoff between ε, δ, and γ occurs.
14 This is necessary for undominated strategies, which will assume the multiplicative and additive bounds
on y are worst-case.
15Even with a future-dependent utility function, the player will choose the resource that will maximize her
utility function given the current counter values during her turn (and not concern herself with what future
players might choose).
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(2) Undominated Strategy(UD): A player is allowed to play any undominated strat-
egy ai with respect to the announcements mi. A strategy ai is dominated with re-
spect to mi if there is some a′i for which ui(a

′
i, a−i) > ui(ai, a−i) for all a−i which

could cause mi with positive probability. If no such a′i exists, ai is said to be undom-
inated with respect tomi. For instance, in the resource sharing game, with (α, β, 0)-
accurate counter vector, this implies that picking resource r for a player is domi-
nated if there exists resource r′ such that si,r′/α − β > αsi,r + β, (for vr[·] = vr′ [·]),
under undominated strategic play, a player can pick any undominated resource.

4.4. Competitive ratio
We analyze the social welfare SW (a) =

∑
i ui(a) generated by an announcement mech-

anism M and compare it to the optimal social welfare OPT . For a game setting g,
constituted of a collection of players [n] and their allowable actions Ai (as defined in
Section 4.1), OPT (g) is defined as the optimal social welfare that can be achieved by
any allocation of resources to the players, where the space of feasible allocations is
determined by the setting g.

Our focus in this paper will be to investigate the social welfare guarantees achieved
with perfect, empty, and differentially-private counter vector under greedy or undomi-
nated strategic play. We will denote by CRGREEDY(g,M) and CRUS(g,M) to denote the
ratio of OPT (g) to the social welfare achieved under greedy and undominated strate-
gies respectively, using mechanism M. In case M uses internal random coins, our
results will either be worst-case over all possible throws of the random coins, or will
indicate the probability with which the social welfare guarantee holds. We consider
perfect counters (MFull), empty counters (M∅), and differentially-private counters.

5. RESOURCE SHARING
In this section, we consider resource sharing games – the utility to a player is com-
pletely determined by the resource she chooses and the number of players who have
chosen that resource before her. This section considers the case where players’ actions
are discrete: ai ∈ {0, 1}m for all i, ai ∈ Ai. We defer the analysis of the case where
players’ actions are continuous to Appendix D.

We first present results for the cases of perfect counters and empty counters. For
the case of perfect counters, we prove that playing the greedy strategy strictly domi-
nates any other choice of action, and therefore, under undominated strategic play, each
player shall still play only the greedy strategy. For perfect counters, therefore, greedy
and undominated strategic play are identical. We also show that the competitive ratio
of the greedy strategy is at most 4 (Theorem 5.1).

For the case of empty counters, when players choose undominated strategies, the
competitive ratio is unbounded (Theorem 5.2). The greedy strategy isn’t well-defined
in the setting with empty counters, though players playing greedily with respect to the
initial values of resources has similarly poor performance.

We then consider (α, β, γ)-accurate counters. Under greedy strategies, for any non-
increasing resource valuation function vr, the competitive ratio is O(α2β) (Theo-
rem 5.5) with probability at least 1 − γ. Under undominated strategies, the compet-
itive ratio is bounded only when the function vr decreases slowly (Theorem 5.8). For
arbitrary non-increasing functions, the competitive ratio of undominated strategies is
unbounded (Theorem 5.7).

5.1. Perfect counters and empty counters
Before delving into our main results, we point out that, with perfect counters, greedy
is the only undominated strategy, and the competitive ratio of greedy is a constant. We
state this result formally, and defer its proof to Appendix A.
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THEOREM 5.1. With perfect counters, in the discrete, future-independent setting,
greedy behavior is dominant-strategy and all other behavior is strictly dominated.
Moreover, CRGREEDY(MFull, g) = 2 for each g where each player selects exactly one re-
source, and CRGREEDY(MFull, g) = 4 for any sequential resource-sharing game g.

Recall, from our example in the introduction, that both greedy and undominated
strategies can perform poorly with respect to empty counters. We defer the proof of the
following results to Appendix A. Recall that M∅ refers to the empty counter mecha-
nism.

THEOREM 5.2. There exist games g such that CRUS(M∅, g) is unbounded.

We show, in the case of private counters, that a restricted class of valuation curves
allow for a competitive ratio which is bounded and independent of n for undominated
strategies. The next result shows that, for empty counters, even this restriction is not
enough to get a competitive ratio which is independent of the number of players n.

THEOREM 5.3. There exists g such that CRUS(M∅, g) ≥ n2

log(n) , when vr(t) =
vinitr

t .

5.2. Privacy-preserving information: the Greedy Strategy
In this and the following section, we explore the generalizations of Theorem 5.1, to the
setting where the counters are not perfect but instead are privacy-preserving. We note
that, in the case of perfect counters, the set of undominated strategies contains only
the greedy strategy. On the other hand, with incomplete information, both solution
concepts are worthy of study. This section extends the result of Section 5.1, showing
that approximate counts of the number of people having chosen each resource are
sufficient for greedy behavior to approximate OPT . In contrast, in Section 5.3, we
show that for arbitrary value curves, undominated strategies perform poorly; for “well-
behaved” value curves (such as vr(k) = vinitr /k), we show undominated strategies will
also perform well.

Let a counter be called an underestimator if the value of the counter is always
(weakly) smaller than the true value it is counting. We mention the following, which
allows us to convert arbitrary counters to underestimators. Let the perceived value of
a player for an action (w.r.t counters) be the value they would get for that action if the
counters were perfect.

OBSERVATION 5.4. An (α, β)-counter vector can be converted to an
(
α2, 2β

)
-counter

vector which is an underestimator.

THEOREM 5.5. Suppose thatM is a (α, β, γ)-counter vector, and thatM is an un-
derestimator. Then, for any discrete, future-independent resource-sharing game g, with
probability 1− γ, CRGREEDY(M, g) = O(αβ).

LEMMA 5.6. Suppose players choose greedily according to a (α, β)-underestimator.
Then, in sum, their actual value is at least a 1

2αβ -fraction of their perceived value.

By Theorem 5.1 and Lemma 5.6, a factor dependent only on α, β is lost from OPT
when players select their resources greedily. It remains to show that, when players
are choosing greedily according to approximate counts, their actual utility is well-
approximated by their perceived utility. The proof of the main theorem for this section
is below.

PROOF THEOREM 5.5. Assume none of the counters fail which happens with prob-
ability at least 1−γ. Then, let PSW denote the perceived social welfare of a particular
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action set, and OPTCounters be the optimal allocation if the displayed value of the coun-
ters was correct at each timestep. Then, Lemma 5.6 states that

SW (GreedyCounters) ≥
PSW (GreedyCounters)

2αβ
(1)

Thus, we have

SW (GreedyCounters) ≥
PSW (GreedyCounters)

2αβ
≥ PSW (OPTCounters)

8αβ
≥ SW (OPTReal)

8αβ

where the first inequality comes from 1, the second comes from Theorem 5.1, and the
final inequality comes from the fact that the social welfare of OPT on the perceived
resource values is at least as high as the social welfare of OPT on the real values,
since the counters always under-count. We get this ratio with probability at least 1−γ,
implying the desired bound.

PROOF LEMMA 5.6. Suppose k players chose a given resource r. Without loss of
generality, let us assume that those k players chose r one after another, for ease of
notation: that is, that we are looking at the first k players’ counter values. We wish to
bound the ratio ∑k

i=1 vr(si,r)∑k
c=1 vr(c)

.

We start by “grouping” the counter values: it cannot take on values that are small for
more than a certain number of steps. In particular, if xi,r > Tαβ, for some T ∈ N,

si,r ≥
1

α
xi,r − β ≥

Tαβ

α
− β = (T − 1)β

Now, we bound the ratio from above using this fact.∑k
i=1 vr(si,r)∑k
c=1 vr(c)

≤
2αβ

∑d kαβ e
T=1 vr((T − 1)β)∑k
c=1 vr(c)

≤
2αβ

∑d kαβ e
T=1 vr((T − 1)β)∑d kαβ e

T=1 vr((T − 1)β)
≤ 2αβ

where the first inequality came from the fact that the value curves are non-increasing
and the lower bound on the counter values from above, and the second inequality from
the fact that all terms are non-negative.

5.3. Privacy-preserving counters and Undominated strategies
We begin with an illustration of how undominated strategies can perform poorly for ar-
bitrary value curves, as motivation for the restricted class of value curves we consider
in Theorem 5.8. Suppose one resource r has value curve vr(1) = H and vr(i) = 0 for all
i > 1, and one resource r′ such that vr′(0) = ε, and vr′(i) = 0 for all i > 0. Suppose the
second player has both r, r′ available. Then it will be undominated for her to choose r′
so long as the counters have any possibility of showing her s1,r < x1,r. If then the first
player has only resource r′ available, the total welfare will be just ε rather than H + ε;
this ratio is unbounded.

In the case of greedy players, we were able to avoid the problem of players under-
valuing resources rather easily, by forcing the counters to only underestimate xi,r. This
won’t work for undominated strategies: players might assume the counts are shaded
downward. While we can bias the counters to only weakly overestimate xi,r, if how-
ever, the counters include in their possible range the actual value and some value
larger than that, any overestimation of x1,r will still imply that r′ is undominated for
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the second player. More generally, no (ε, δ)-privacy-preserving announcement mecha-
nism will be able to differentiate between the case where player 1 chose resource r and
where he chose r′ with probability much more than (ε+ δ).

THEOREM 5.7. For an (ε, δ)–differentially private announcement mechanism M,
there exist games g for which CRUS(g,M) is unbounded.

Given the above example, we cannot hope to have a theorem as general as The-
orem 5.5 when analyzing undominated strategies with privacy-preserving counters.
Instead, we show that, for a class of “well-behaved” value curves, we can bound the
competitive ratio of undominated strategies (Theorem 5.8).

Again, along the lines of the greedy case, we show that any player who chooses
any undominated resource r′ over resource r gets a reasonable fraction of the utility
she would get from choosing r. Then, by the analysis of greedy players, we have an
analogous argument implying the bound of Theorem 5.8.

THEOREM 5.8. If each value curve vr has the property that ψ(α, β)vr(x) ≥
vr(max{0, xα2 − 2β

α }) and also vr(α2x+2αβ) ≥ φ(α, β)vr(x), then an action profile a of un-
dominated strategies according to (α, β)-counter vector gets an

(
1

ψ(α,β)φ(α,β)

)
-fraction of

the SW (GREEDY). Thus, CRUS(g) ≤ 4ψ(α, β)φ(α, β).

In particular, Theorem 5.8 shows that, for games where vr(i) = vr
gr(xi,r)

, where gr is
a polynomial, the competitive ratio of undominated strategies degrades gracefully as
a function of the maximum degree of those polynomials. A simple calculation implies
the following.

COROLLARY 5.9. Suppose for a resource-sharing game g, each resource r has a value
curve of the form vr(x) =

vinitr

gr(x)
, where gr is a monotonically increasing degree-d poly-

nomial and vinitr is some constant. Then, CRUS(g,M) ≤ O(2α3β)d with M providing
(α, β)−counters.

We relegate the proof of Theorem 5.8 Appendix B for lack of space.

6. FUTURE-DEPENDENT
The second model of utility we consider is where each player who selects a given re-
source incurs the same benefit (or cost) from that resource, which is a function of the
total weight placed on that resource. That is, player i’s utility for action ai will be
a function of (

∑n
j=1 aj,1, . . . ,

∑n
j=1 aj,m) (the total weight placed by all players on re-

sources). We call this setting the future-dependent setting. In the future-dependent
setting,

ui(a1, . . . , an) =

m∑
r=1

ari v
′
r(xr),

where we recall that xr =
∑n
i′=1 ai′,r is the total utilization of resource r by all players.

In this general setting, for many of our results, we will be interested in value curves
that do not decrease too quickly. A curve vr is (w, l)-shallow if

max
x≤l

∫ x
0
v′r(t)dt

xv′r(x)
≤ w

which says that the integral of v′r from 0 to x (what players would see as their payoff
from resource r as each made a decision) is not too much larger than the the actual
payoff all players get from the resource being utilized with x weight.
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In Section C, we show that this restriction on the rate of decay of the value curves is
necessary to say anything nontrivial about the performance of the greedy strategy. We
show that, even with perfect counters, greedy’s performance is Θ(w), where all of the
curves are guaranteed to be (w, n)− shallow. Due to space constraints, we focus on the
special case of market sharing in the section below.

6.1. Market sharing
Market sharing is the special case of vr(xr) = c/xr for all xr ≥ 1. Goemans et al. [2004]
showed that for market-sharing games, the competitive ratio of α-approximate greedy
play is at most O(α log(n)). Using analysis similar to theirs, we have the following
result.

COROLLARY 6.1. With (α, β, γ)-counter vector and greedy play, with probability at
least 1− γ, the welfare achieved is at least (OPT − 2βαn)/O((1 + α2) log(n)).

We now focus our attention on a game play based on undominated strategy.

THEOREM 6.2. With perfect counters and undominated strategic play, there are
games for which the welfare achieved is at most OPT/(n log(n)).

PROOF. Here is an example with n players. Consider the case where for every i ≥ 1,
player i is interested in resource 0 and resource i. For every i ≥ 1, the total value of
resource i is (n− i+ 1)(1− ε)/i (for some small ε > 0). The value of resource 0 is 1.

We claim that there is undominated strategy game play where every player chooses
resource 0 giving a social welfare of 1, whereas the optimal welfare is achieved by
assigning player i resource i giving a total welfare of n(log(n)− 1)(1− ε).

Here is such an undominated strategy profile: for each i, player i believes that every
player after her is only interested in resource i. With this belief, it is easy to see that
choosing resource 0 is an undominated strategy for every player.

7. PRIVATE COUNTER VECTORS WITH LOWER ERRORS FOR SMALL VALUES
In this section, we describe a counter for the model of differential privacy under contin-
ual observation that has improved guarantees when the value of the counter is small.

Recall the basic counter problem: given a stream ~a = (a1, a2, ..., an) of numbers ai ∈
[0, 1], we wish to release at every time step t the partial sum xt =

∑t
i=1 ai.

We require a generalization, where one maintains a vector of m counters. Each
player’s update contribution is now a vector ai ∈ [0, 1]m, with the constraint that
‖ai‖1 ≤ 1. That is, a player can add non-negative values to all counters, but the to-
tal value of her updates is at most 1. The partial sums xt then lie in (R+)m (with `1
norm bounded by t).

Given an algorithm A, we define the output stream (s1, s2, ..., sn) = A(~a) where
si = A(t, a1, ..., ai−1). The original works on differentially private counters [Dwork et al.
2010; Chan et al. 2011] concentrated on minimizing the additive error of the estimated
sums, that is, they sought to minimize ‖xt−st‖∞. Both papers gave a binary tree-based
mechanism, which we dub “TreeSum”, with additive error approximately (log2 n)/ε.
Some of our algorithms use TreeSum, and others use a new mechanism (FTSum, de-
scribed below) which gets a better additive error guarantee at the price of introducing
a small multiplicative error. We capture a mixed approximation guarantee as follows:

Definition 7.1. The algorithmA provides an (α, β, γ)-approximation to partial sums
if for every (adaptively defined) sequence ~a ∈ ([0, 1]m)n, with probability at least 1 − γ
over the coins of A, for all times i ∈ [n] and counters r ∈ [m], the reported value xt,r
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satisfies:
1

α
· xi,r − β ≤ si,r ≤ α · xi,r + β .

Proofs of all the results in this section can be found in Appendix E.

LEMMA 7.2. For every m ∈ N and γ ∈ (0, 1): Running m independent copies
of TreeSum [Dwork et al. 2010; Chan et al. 2011] is (ε, 0)-differentially private and
provides an (1, Ctree · (logn)(log(nm/γ))

ε , γ)-approximation to partial vector sums, where
Ctree > 0 is an absolute constant.

Even for m = 1, α = 1, this bound is slightly tighter than those in Chan et al. [2011]
and Dwork et al. [2010]; however, it follows directly from the tail bound in Chan et al.
[2011].

Our new algorithm, FTSum (for Flag/Tree Sum), is described in Algorithm 1. For
small m (m = o(log(n))), it provides lower additive error at the expense of introducing
an arbitrarily small constant multiplicative error.

LEMMA 7.3. For every m ∈ N, α > 1 and γ ∈ (0, 1), FTSum (Algorithm 1) is (ε, 0)-
differentially private and (α, Õα(m log(n/γ)

ε ), γ)-approximates partial sums (where Õa(·)
hides polylogarithmic factors in its argument, and treats α as constant).

FTSum proceeds in two phases. In the first phase, it increments the reported output
value only when the underlying counter value has increased significantly. Specifically,
the mechanism outputs a public signal, which we will call a “flag”, roughly when the
true counter achieves the values log n, α log n, α2 log n and so on, where α is the desired
multiplicative approximation. The reported estimate is updated each time a flag is
raised (it starts at 0, and then increases to log n, α log n, etc). The privacy analysis for
this phase is based on the “sparse vector” technique of Hardt and Rothblum [2010],
which shows that the cost to privacy is proportional to the number of times a flag is
raised (but not the number of time steps between flags).

When the value of the counter becomes large (about α log2 n
(α−1)ε ), the algorithm switches

to the second phase and simply uses the TreeSum protocol, whose additive error (about
log2 n
ε ) is low enough to provide an α multiplicative guarantee (without need for the

extra space given by the additive approximation).
If the mechanism were to raise a flag exactly when the true counter achieved the val-

ues log n, α log n, α2 log n, etc, then the mechanism would provide a (α, log n, 0) approx-
imation during the first phase, and a (α, 0, 0) approximation thereafter. The rigorous
analysis is more complicated, since flags are raised only near those thresholds.

PROPOSITION 7.4. If A is (ε, δ)-private and (α, β, γ)-accurate, then one can mod-
ify A to obtain an algorithm A′ with the same efficiency that is (ε, δ + γ)-private and
(α, β, 0)-accurate.

COROLLARY 7.5. Algorithm 1 is an (ε, δ)-differentially private vector counter algo-
rithm providing a

(1) (1, O( (logn)(log(nm/δ))
ε ), 0)-approximation (using modified TreeSum); or

(2) (α, Õα(m logn log log(1/δ)
ε ), 0)-approximation for any constant α > 1 (using FTSum).

8. OTHER GAMES
In this section, we study a number of games which Leme et al. [2012] showed to have a
large improvement between their Price of Anarchy and their sequential Price of Anar-
chy. We pose the question: with privacy-preserving information handed out to players,
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Algorithm 1: FTSum — A Private Counter with Low Multiplicative Error
Input: Stream ~a = (a1, ..., an) ∈ ([0, 1]m)n, parameters m,n ∈ N, α > 1 and γ > 0
Output: Noisy partial sums s1, ..., sn ∈ Rm

k ← dlogα( α
α−1 · Ctree ·

log(nm/γ)
ε )e;

/* Ctree is the constant from Lemma 7.2 */
ε′ ← ε

2m(k+1) ;
for r = 1 to m do

flagr ← 0;
x0,r ← 0;
τr ← (log n) + Lap(2/ε′);

for i = 1 to n do
for r = 1 to m do

if flagr ≤ k then (First phase still in progress for counter r)
xi,r ← xi−1,r + ai,r;
˜xi,r ← xi,r + Lap( 2

ε′ );
if ˜xi,r > τr then (Raise a new flag for counter r)

flagr ← flagr + 1;
τr ← (log n) · αflagr + Lap(2/ε′);

Release si,r = (log n) · αflagr−1 ;
else (Second phase has been reached for counter r)

Release si,r = r-th counter output from TreeSum(~a, ε/2));

what loss is incurred in comparison to providing exact information? In addition to in-
troducing privacy constraints, we should note here that while in Leme et al. [2012],
each player playing the sequential game knows the type of every other player, in our
setting, we only provide information about actions taken by previous players. For most
results in this section, we relegate the proof to Appendix F.

8.1. Unrelated Machine scheduling games
An instance of the unrelated machine scheduling game consists of n players who must
schedule their respective jobs on one of the m machines; the cost to the player is the
final load on the machine on which she scheduled her job. The size of player k’s job
on machine q is tkq. The objective of the mechanism is to minimize the makespan. We
consider the dynamics of this game when it is played sequentially. Leme et al. [2012]
prove that the sequential price of anarchy is O(m2n).

In our setting, each player is shown a load profile when it is her turn to play. The
load profile L denotes the displayed vector of loads on the various machines. In the
perfect counter setting, the displayed load equals the exact load on each machine. We
now show that undominated strategies, with perfect counters, perform unboundedly
poorly with respect to OPT.

LEMMA 8.1. If M is a perfect counter vector, CRUS(M, g) is unbounded for some
instances g of unrelated machine scheduling.

PROOF. Consider the case with two players (p1 and p2) and two machines (m1 and
m2). p1 arrives before p2. Player p1 has a cost of 0 on m1 and 1 on m2. It is an undom-
inated strategy for player 1 to choose m2 since if player p2 has a cost of 2 on m1 and 3
on m2, p2 chooses m1 and so p1 is better off scheduling her job on m2.

However, if p1 chooses m2 (an undominated strategy) m2, and player p2 has cost 1 on
m1 and 0 on m2, the optimal makespan is 0; the achieved makespan is at least 1.
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In light of this result, we restrict our attention to greedy strategies for machine
scheduling, and show that the competitive ratio of the greedy strategy with privacy-
preserving counters is bounded. Below, we denote by t∗k the minimum cost of job k
among all the machines. The following result follows from the analysis of the greedy
algorithm as presented in Aspnes et al. [1997].

THEOREM 8.2. [Aspnes et al. 1997] With perfect counters and players playing
greedy strategies, the makespan is at most

∑n
i=1 t

∗
i , and since OPT ≥

∑n
i=1 t

∗
i /m, the

competitive ratio is at most m.

Theorem 8.3 shows that such a bound extends to the setting where players have only
approximate information about the state, showing that privacy-preserving information
is enough to attain nontrivial coordination with greedy players.

THEOREM 8.3. Using (α, β, γ)-counter vector, and players playing greedy strategies,
with probability 1− γ, the makespan is at most α2n+1m ·OPT + β(α2n+1(2n+ 1) + 1).

8.2. Cut games
A cut game is defined by a graph, where every player is a node of the graph. Each of
the n players chooses one of the two colors, ‘red’ or ‘blue’, and the utility to a player is
the number of her neighbors who do not have the same color as hers.

In sequential play, when a player has her turn to play, she is shown counts of the
number of her neighbors who are colored ‘red’ and who are colored ‘blue’. We assume
each player knows the total number of her neighbors in the graph exactly. With greedy
strategies, each player chooses the color with fewer nodes when it is her turn to play.
As was the case for machine scheduling, undominated strategies for cut games perform
much worse than OPT , even with perfect counters.

LEMMA 8.4. With perfect counters and undominated strategies, the competitive ra-
tio against the optimal social welfare is at least n.

Given the previous result, we focus our attention on greedy strategies. With greedy
strategies and perfect counters, the competitive ratio is constant, shown by Leme et al.
[2012]. We show that, with privacy-preserving counters, it is possible to compare the
social welfare of greedy to that of OPT .

THEOREM 8.5. [Leme et al. 2012] With perfect counters and greedy strategies, the
competitive ratio against the optimal social welfare is at most 2.

Now, we compare the performance of greedy w.r.t. to approximate counters to OPT .

THEOREM 8.6. With (α, β, γ)-counter vector and greedy strategies, with probability
at least 1− γ, the social welfare is at least OPT

2α2 − 2β
α n.

8.3. Cost sharing games
A cost sharing game is defined as follows. n players each have to choose one of the m
sets. There is an underlying bipartite graph between the players and the sets, and a
player can choose only one among those sets that she is adjacent to (i.e., she shares an
edge with). Moreover, every set i has a cost ci and the cost to a player is the cost of the
set she chooses divided by the number of players who chose that set i.e., each of the
players who choose a particular set share its cost equally. Each player would like to
minimize her cost; the social welfare is the sum of costs of the players, which is equal
to the sum of the costs of the sets chosen by various players.

Leme et al. [2012] prove that the sequential price of anarchy is O(log(n)). Our work
uses counters to publicly display an estimate of the number of the players who have
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selected that set so far. With perfect counters, this estimate is always exact. Unfortu-
nately, greedy strategies can perform poorly in this setting, even with exact counters.

LEMMA 8.7. With perfect counters and greedy strategies, the competitive ratio is n.

PROOF. We first show that the competitive ratio is at most n. Let ŝi be the set
that i should choose in the optimal allocation, and let si she chose. Also, let l(si) be
the number of player who chose set si. Greedy strategy dictates that it must be the
case that csi/l(si) ≤ cŝi . Summing over all players i, we have the total cost of the
allocation produced by the mechanism is

∑n
i=1 csi/l(si) ≤

∑n
i=1 cŝi , and this is equal to∑

j∈J q(j)cj , where J is the collection of sets picked in the optimal allocation and qj is
the number of players allocated to set j. Since the optimal cost is

∑
j∈J cj and qj ≤ n,

we have the competitive ratio is at most n.
We now show that the competitive ratio is at least n. Consider the case where there is

a public set s that is adjacent to all the players and has cost 1+ε (for any small ε > 0). In
addition, there are n private sets s1, · · · , sn with set si having cost 1 and adjacent only
to player i. In the sequential game play, with greedy strategies and perfect counters
(indicating the number of players who have chosen a particular set so far in the game),
each player will choose her private set since that will have cost 1 as opposed to 1 + ε
for the public set. This gives a total cost of n. The optimal solution is to pick the public
set with a total cost of 1 + ε.

In light of Lemma 8.7, the greedy strategy with respect to approximate counters
should not perform well with respect to OPT . However, we do show that there are
instances in which greedy with respect to these approximate counters can be better
than greedy with respect to perfect counters. The example we use is the same as in
Lemma 8.7, and is also to the example showing the price of anarchy for cost-sharing is
Ω(n). Proposition 8.8 and the exponential improvement of the sequential price of anar-
chy over the simultaneous price of anarchy [Leme et al. 2012] suggest the instability
of this equilibrium.

PROPOSITION 8.8. In certain instances of cost sharing with greedy strategies, the
competitive ratio using privacy-preserving counters is better than using perfect counters.

PROOF. Consider the same instance as in Lemma 8.7. There is a public set that is
adjacent to all the players and has cost 1 + ε. In addition, there is a private set for each
player that is adjacent to only that player. Each private set has cost 1. The number of
players is n and the number of sets is m = n+ 1.

Consider the following construction of the counter vector (here p = 1, q =
O(log(n) log(n2m)/ε), r = 1/n and c = 8(p2 + 2pq)). For the initial sequence of c play-
ers, for each player i ∈ [c], for each counter, a uniformly randomly chosen number
in the range [0, c] (drawn independently for each counter) is displayed. Starting with
the (c + 1)st player, each counter in the counter vector displays the value according
to (p, q, r)–Tree-sum based construction (Lemma 7.2). It is easy to verify that the con-
struction gives a (α, β, γ) counter vector for α = p, β = c and γ = r.

Let P be the counter that corresponds to the public set, and Si be the counter for
the ith private set in the counter vector. Initially, the true value of all the counters is 0.
For the initial set of c players, for each i ∈ [c], the probability that the displayed value
of P is greater than that of Si is 1/2 (since for each player i ∈ [c], on each counter, a
uniformly random number drawn independently from the range [0, c] is displayed).

Hence, in the first c players, the expected number of players for who the displayed
value of P is greater than the corresponding Si is c/2, and under greedy strategy, all
these players will choose the public set. Hence the expected true count of the P at the
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end of the prefix of c players is c/2. Using a Chernoff bound, the probability the true
count of P after the first c players is smaller than c/4 is at most e(−c/16).

After the initial sequence of c players, the counter values are displayed according to
the (p, q, r)-Tree based construction. By the error guarantees, it follows that if the true
count for the public set is at least p2 + 2pq at the end of the initial c-length sequence,
then for the rest of the players, with probability (1 − r), the displayed value of P is
always strictly greater than the displayed value of every Si (whose true value is at
most 1 and so the displayed value is at most p+q). Since c/4 = 2(p2 +2pq), we can infer
that with probability at least (1− r − e(−c/16)), all players after the initial sequence of
length c will choose the public set giving the total cost of at most 1 + ε+ c. In contrast,
with perfect counters, the total cost is always n (Lemma 8.7).

9. DISCUSSION AND OPEN PROBLEMS
In this work, we considered how public dissemination of information in sequential
games can guarantee a good social welfare while maintaining differential privacy of
the players’ strategies. We considered two ‘extreme’ cases – the greedy strategy and
the class of all undominated strategies. While analyzing the class of undominated
strategies gives guarantees that are robust, in many games that we considered, the
competitive ratios were significantly worse than greedy strategies, and in some cases
they were unbounded. It is an interesting direction for future research to consider
classes of strategies that more restricted than undominated strategies yet are general
enough to be relevant for games where players play with imperfect information.

As mentioned in the introduction, we note here that, while players are making
choices subject to approximate information, our results are not a direct extension of
the line of thought that approximate information implies approximate optimization.
In particular, for greedy strategies, while there may be a bound on the error of the
counters, but that does not imply that, for arbitrary value curves, playing greedily
according to the counters will be approximately optimal for each individual. In partic-
ular, consider one resource r with value H for the first 10 investors, and value 0 for the
remaining investors, and a second resource r′ with value H/2 for all investors. With
(α, β, γ), as many as β players might have unbounded ratio between their value for r
as r′, but will pick r over r′. The analysis of greedy shows, despite this anomaly, the
total social welfare is still well-approximated by this behavior.

All of our results relied on using differentially private counters for disseminating
information. For the differentially-private counter, a main open question is “what is
the optimal trade-off between additive and multiplicative guarantees?”. Furthermore,
as part of future research, one can consider other privacy techniques for announcing
information that can prove useful in helping players achieve a good social welfare. And
more generally, we want to understand what features of games lend themselves to be
amenable to public dissemination of information that helps achieve good welfare and
simultaneously preserves privacy of the players’ strategies.
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A. FUTURE INDEPENDENT: DISCRETE VERSION
THEOREM A.1. With perfect counters, in the discrete, future-independent setting, greedy

behavior is dominant-strategy and all other behavior is strictly dominated. Moreover,
CRGREEDY(MFull, g) = 2 for each g where each player selects exactly one resource, and
CRGREEDY(MFull, g) = 4 for any sequential resource-sharing game g.

The proof of this Theorem follows from the connection between future-independent resource-
sharing and online vertex-weighted matching, which we mention below.

OBSERVATION A.2. In the setting where ‖ai‖1 = 1 for all ai ∈ Ai, for all i, the full-
information, discrete, future-independent setting reduces to online, vertex-weighted bipartite
matching. The full-information, discrete, future-independent setting reduces to many-to-one on-
line, vertex-weighted bipartite matching where the vertices arriving online have a set of subsets
of allowable matches.

PROOF. Construct the following bipartite graphG = (U, V,E) as an instance of online vertex-
weighted matching from an instance of the future-independent resource sharing game. For each
resource r, create n vertices in V , one with weight vr(t) for each t ∈ [n]. As players arrive online,
they will correspond to vertices in ui ∈ U . For each ai ∈ Ai corresponding to a set of resources
S, ui is allowed to take any subset of V with a single copy of each r ∈ S.

LEMMA A.3 ([KARP ET AL. 1990]). The greedy strategy for online, vertex-weighted bipartite
matching has a competitive ratio of 1

2
.

PROOF OF THEOREM 5.1. Consider any instance of G = (U, V,E), a vertex-weighted bipar-
tite graph. Let µ be the optimal many-to-one matching from U to V (where u ∈ U has poten-
tially multiple neighbors in V ). Consider µ′, the greedy many-to-one matching for a particular
sequence of arrivals σ.

Consider a particular u ∈ U , and the time it arrives σ(u) as µ′ progresses. If at least 1/2 the
value of µ(u) is available at that time, then w(µ′(u)) ≥ 1

2
w(µ(u)) (since u can be matched to any

subset of µ(u), by the downward closed assumption). If not, then w(µ′(µ(u))) ≥ 1
2
w(µ(u)) (at

least half the value was taken by others). Thus, we know that, for all u,

w(µ′(u)) + w(µ′(µ(u))) ≥ 1

2
w(µ(u))

summing up over all u, we get

∑
u

w(µ′(u)) + w(µ′(µ(u))) = 2w(µ′) ≥ 1

2

∑
u

w(µ(u)) =
1

2
w(µ)

Rearranging shows that w(µ′) ≥ 1
4
w(µ).

Note that this proof also applies when, rather than each vertex having a set of downwards-
closed subsets he can choose between, each vertex has a set of edges and can choose any subset
of those edges, though that’s not necessary for our purposes.

c© 2014 ACM 0000-0000/2014/02-ARTX $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000
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A.1. Empty Counters for Resource Sharing: Lower bounds
In this section, we investigate what happens with empty counters. Suppose players have no
knowledge of other players’ allowable actions, and no information about other players’ selected
actions. LetM∅ denote the mechanism that outputs ~0 for all inputs.

PROOF OF THEOREM 5.2. Let g be the following game. For each player i, there is a resource
ri such that vri(1) = H but vri(> 1) = 0. Furthermore, let there be some other resource r such
that vr(1) = 1. Let Ai contain 2 allowable actions: selecting ri and selecting r.

OPT in this setting would have each player select ri, which has SW (OPT ) = nH. On the
other hand, we claim it is undominated for each player to select r instead (call this joint action
a). If each player were to have a “twin”, then ri could have already been selected by another
player so that i would get more utility from r than ri. Then, this undominated strategy a has
SW (a) = n. Thus, we have a game g for which

CRUS(g) ≥
nH

n
= H

which, as H →∞ is unbounded.

The negative result above isn’t particularly surprising: if there is some coordination to be
done, but there is no coordinator and no information about the target, all is lost. On the other
hand, our positive result for undominated strategies (Theorem 5.8) in the case of private infor-
mation relies on a very particular rate of decay of the resources’ value. Theorem 5.3 show that,
even under this stylized assumption where all resources’ values shrink slowly, a total lack of
information can lead to very poor behaviour in undominated strategies.

PROOF OF THEOREM 5.3. For each player i, let ri be a resource where vri(1) = n (note that
this uniquely determines vi(c) for all c). Let there be another resource r such that vr(1) = 1. Let
each Ai contain all resources. Since vri (1)

n
= 1, it is not dominated for player i to select r. Let

a denote the joint strategy where each player selects resource r. Then, SW (A) = log(n). Since
SW (OPT ) = n2, CRUS ≥ n2

log(n)
.

B. UNDOMINATED STRATEGIES FOR RESOURCE-SHARING, OMITTED PROOFS
PROOF OF THEOREM 5.8. Consider a player i. We show that any undominated set of re-

sources R′ gets a reasonable fraction of the greedy resource set choice R. For a resource r, there
is a conceivable range of xi,r. Let x̂i,r denote player i’s reasoned possible value of xi,r, con-
sistent with the announcement si,r. Now, consider the current true count xi,r. We will directly
argue about the possible range of the perceived counts x̂i,r as a function of the true count. By the
bounds on (α, β, γ)-counters, for a given true value x, it must be the case that all announcements
sir satisfy:

αxi,r + β ≥ sir ≥
1

α
xi,r − β

Rearranging, we have si,r ∈ [ 1
α
xi,r − β, αxi,r + β].Suppose these bounds are realized; we wish

to upper and lower bound x̂i,r as a function of these announcement values. By the quality of the
announcement, we have that αx̂i,r + β ≥ si,r ≥ 1

α
xi,r − β.

We can similarly upper bound x̂i,r, e.g. αxi,r+β ≥ si,r ≥ 1
α
x̂i,r−β, which, by the fact that the

true count is at least 0, implies x̂i,r ∈ [max{0, xi,r
α2 − 2β

α
}, α2xi,r + 2αβ]. Now, suppose player i

chose the set of resource R′ which was undominated, while R would have been the greedy choice.
Since the set R′ is undominated (by the greedy choice R):

∑
r∈R′

vr(x̂i,r) ≥
∑
r∈R

vr(x̂i,r) (2)

We use the lower bound on x̂i,r to imply
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∑
r∈R′

vr(x̂i,r) ≤
∑
r∈R′

vr(max{0, xi,r
α2
− 2β

α
}) ≤

∑
r∈R′

ψ(α, β)vr(xi,r) (3)

where the first inequality came from the lower bound on the counter, and the fact that the
valuations are decreasing, and the second from the assumption about vr on x and its lower
bound.

Similarly, we know for each r that

∑
r∈R

vr(x̂i,r) ≥
∑
r∈R

vr(α
2xi,r + 2αβ) ≥

∑
r∈R

vr(xi,r)

φ(α, β)
(4)

Combining (4,3,2)

ψ(α, β)φ(α, β)
∑
r∈R′

vr(xi,r) ≥
∑
r∈R

vr(x̂i,r)

we have the desired ratio.

C. FUTURE-DEPENDENT, GENERAL CASE
THEOREM C.1. There exist sequential resource-sharing games g, where each resource r’s

value curve v′r is (w, n) − shallow, such that in the full-information, future-dependent setting,
CRGREEDY(MFull, g) ≥ 2w.

PROOF. Consider two players and two resources r, r′. Let r have a value curve v′r(0) = w,
v′r(1) =

1
2

and v′r′(0) = w − ε. Suppose player one has access to both resources, the other having
only resource r as an option. Then, player one will choose r according to greedy, and player two
will always select r. The social welfare will be SW (greedy) = 1, whereas OPT is for player 1 to
take r′ and will have SW (OPT ) = 2w − ε. As ε→ 0, this ratio approaches 2w.

Thus, as w → ∞, the competitive ratio of the greedy strategy is unbounded. Fortunately, the
competitive ratio cannot be worse than this, for fixed w, as we show in the theorem below.

THEOREM C.2. Suppose, for a sequential resource-sharing game g, each resource r’s
value curve vr is (w, n) − shallow. Then, in the full-information, future-dependent setting,
CRGREEDY(MFull, g) ≤ 4w.

PROOF. Let PSW denote the perceived social welfare of a particular action set. Consider
a given player who chooses some set of resources according to the greedy strategy, with the
impression that she should get value V from her choices. That is, she chose ai such that

ai = argmaxai∈Ai
∑
r

∫ xi,r+ai,r

xi,r

v′r(x)dx

Then, we sum up the perceived utility all players have for their actions ai:

PSW (GREEDY) =
∑
i∈[n]

∑
r

∫ xi,r+ai,r

xi,r

v′r(x)dx =
∑
r

∫ xn,r+an,r

0

v′r(x)dx

≤w (xn,r + an,r) v
′
r (xn,r + an,r) = wSW (GREEDY)

(5)

where the last inequality comes from our assumption about the value curves all being (w, n)−
shallow.

We now need to relate this quantity to OPT . Consider the game g′ where each player actually
received her perceived payoff

∑
r

∫ xi,r+ai,r
xi,r

v′r(x)dx. It is the case that OPTg′ ≥ OPTg. Moreover,
players are choosing their strategies greedily according to g′’s utility functions, so
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SW (GREEDY, g) ≥ 1

w
PSW (GREEDY, g) =

1

w
SW (GREEDY, g′) ≥ 1

4w
OPTg′ ≥

1

4w
OPTg

where the first inequality follows from (5), the second from the fact that PSW (g, a) =
SW (g′, a) for all a, the third from the fact that GREEDY is 4-competitive with OPT for g′ by
Lemma 5.1, and the final inequality follows from OPTg′ ≥ OPTg.

D. FUTURE INDEPENDENT SETTING: CONTINUOUS VERSION
D.1. Utility functions when players have continuous investments
In Section D, we allow investments in resources to be non-discrete. Here, we describe the form
of players’ utility in the continuous model. Each resource r is associated with a non-increasing
value curve v′r : R≥0 → R≥0. In the future-independent setting,

ui(a1, . . . , an) =

m∑
r=1

∫ xi,rai,r

xi,r

v′r(t)dt,

where xi,r =
∑i−1
i′=1 a

r
i′ is the amount already invested in resource r by earlier players.

In this setting, in order to prove a theorem analogous to Theorem 5.5 in the discrete setting,
we need an analogue to Lemma 5.1 that holds in the full-information continuous setting. We no
longer have the tight connection between our setting and matching; nonetheless, the fact that
the greedy strategy 4-approximation to OPT continues to hold

LEMMA D.1. The greedy strategy for many-to-one online, continuous, resource-weighted
“matching”, where players arrive online and have tuples of allowable volumes of resources, has a
competitive ratio of 1

4
.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

xr

v′r
Optimal players’regions
Greedy players’ regions

Fig. 1. Suppose the blue regions are those selected by the players who got those regions in OPT, and the red
regions are those selected by some other player. Then, if some greedy player(s) have taken at least half of
the value of the optimal regions for another player, at least that much utility has been gained by the greedy
players. If not, half the value is still available for the player at hand.

PROOF. The proof is identical to the proof of Lemma 5.1, with the exception that we no longer
want matchings µ, µ′ but rather correspondences between continuous regions of v′r. See Fig-
ure D.1 for a visual proof sketch.
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With Lemma D.1, the generalization of Theorem D.2 is immediate.

THEOREM D.2. Suppose that M is a (α, β, γ)-counter, and that M is an underestima-
tor. Then, for any continuous, future-independent resource-sharing game g, CRGREEDY(M, g) =
O(αβ).

E. ANALYSIS OF PRIVATE COUNTERS
PROOF OF LEMMA 7.2. We assume the reader is familiar with the TreeSum mechanism. The

privacy of this construction follows the same argument as for the original constructions. One
can view m independent copies of the TreeSum protocol as a single protocol where the Laplace
mechanism is used to release the entire vector of partial sums. Because the `1-sensitivity of each
partial sum is 1 (since ‖at‖ ≤ 1), the amount of Laplace noise (per entry) needed to release the
m-dimensional vector partial sums case is the same as for a dimensional 1-dimensional counter.

To see why the approximation claims holds, we can apply Lemma 2.8 from [Chan et al. 2011]
(a tail bound for sums of independent Laplace random variables) with b1 = · · · = blogn = log n/ε,

error probability δ = γ/mn, ν =
(logn)

√
log(1/δ)

ε
and λ = (logn)(log(1/δ)

ε
, we get that each individual

counter estimate st(j) has additive errorO( (logn)(log(nm/γ))
ε

) with probability at least 1−γ/(mn).
Thus, all n ·m estimates satisfy the bound simultaneously with probability at least 1− γ.

PROOF OF LEMMA 7.3. We begin with the proof of privacy. The first phase of the protocol is
ε/2-differentially private because it is an instance of the “sparse vector” technique of Hardt and
Rothblum [2010] (see also [Roth 2011, Lecture 20] for a self-contained exposition). The second
phase of the protocol is ε/2-differentially private by the privacy of TreeSum. Since differential
privacy composes, the scheme as a whole is ε-differentially private. Note that since we are prov-
ing (ε, 0)-differential privacy, it suffices to consider nonadaptive streams; the adaptive privacy
definition then follows [Dwork et al. 2010].

We turn to proving the approximation guarantee. Note that the each of the Laplace noise
variables added in phase 1 of the algorithm (to compute ˜xt,r and τj) uses parameter 2/ε′. Taking
a union bound over the mn possible times that such noise is added, we see that with probability
at least 1 − γ/2, each of these random variables has absolute value at most O( log(mn/γ)

ε′ . Since
2
ε′ = O(mk

ε
) and k = O(log log(nm

γ
)+log 1

ε
), we get that each of these noise variables has absolute

value Õα(m log(mn/γ)
ε

) with probability all but γ/2. We denote this bound E1.
Thus, for each counter, the i-th flag is raised no earlier than when the value of the counter

first exceeds αi(logn)−E1, and no later than when the counter first exceeds αi(logn) +E1. The
very first flag might be raised when counter has value 0. In that case, the additive error of the
estimate is logn, which is less than E1. Hence, he mechanism’s estimates during the first phase
provide an (α,E1, γ/2)-approximation (as desired).

The flag that causes the algorithm to enter the second phase is supposed to be raised when
the counter takes the value A := αk(logn) ≥ α

α−1
· Ctree · log(nm/γ)ε

; in fact, the counter could be
as small as A − E1. After that point, the additive error is due to the TreeSum protocol and is
at most B := Ctree · log(n) · log(nm/γ)/ε (with probability at least 1 − γ/2) by Lemma 7.2. The
reported value si,r thus satisfies

si,r ≥ xi,r −B =
1

α
xi,r + (1− 1

α
)xi,r −B︸ ︷︷ ︸

residual error

.

Since xi,r ≥ A − E1, the “residual error” in the equation above is at least (1 − 1
α
)(A − E1) −

B = −(1 − 1
α
)E1 ≥ −E1. Thus, the second phase of the algorithm also provides (α,E1, γ/2)-

approximation. With probability 1 − γ, both phases jointly provide a (α,E1, γ)-approximation,
as desired.

F. OTHER GAMES
F.1. Unrelated Machine scheduling games
Below, we denote by t∗k the minimum cost of job k among all the machines and by q∗k the machine
that achieves this minimum.
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PROOF OF THEOREM 8.3. Consider any player i, and let the displayed load profile she sees
be L. Using greedy strategy, she will put her job on machine q that minimizes Lq + tkq and
this in particular shall be at most |L|∞ + t∗k. Since the true makespan before this player placed
her job is at most α|L|∞ + β, hence after she places her job, for the displayed load profile L′,
|L′|∞ ≤ α(α|L|∞ + β + t∗k) + β ≤ α2(|L|∞ + 2β + t∗k).

Using the above reasoning for every player in the sequence, we have the displayed load profile
Ln at the end of the sequence has the property that |Ln|∞ ≤ α2n(|L0|∞+2nβ+

∑n
k=1 t

∗
k), where

L0 is the load profile shown to the first player. But |L0|∞ is at most β, since the true load on all
machines is zero at that point.

Since the displayed makespan at the end of the sequence is at most α2n(β + 2nβ +
∑n
k=1 t

∗
k),

hence the true makespan is at most α2n+1(β+2nβ+
∑n
k=1 t

∗
k) + β. Since OPT ≥

∑n
k=1 t

∗
k/m we

have our result.

F.2. Cut games
PROOF OF THEOREM 8.5. [Leme et al. 2012] Consider the choice made by player t when it

is her turn to play. Let Ct be the number of neighbors of player t that have adopted a color by
the time it her turn to play. Notice that the total number of edges in the graph is

∑
t Ct. Fur-

thermore, the greedy strategy ensures that player t gets value at least Ct/2. Since the number
of edges in the graph is an upper bound on the optimal social welfare, hence we have the greedy
strategy achieving a competitive ratio of 2.

PROOF OF THEOREM 8.6. Let us analyze the play made by player t when it is her turn to
play. Let Rt and Bt be the true counts of red and blue neighbors of t at that time, and without
loss of generality let Rt ≥ Bt. Either the player chooses the blue color and this guarantees her
utility of Ct/2, where Ct = Rt+Bt. On the other hand, if the player were to choose the color red,
it must be the case that the displayed value of the blue counter is at least the displayed value of
the red counter. For this to be true, it must be the case that αBt + β ≥ Rt/α− β, and therefore
Bt ≥ Rt/α

2 − 2β/α ≥ Ct/(2α
2) − 2β/α. Hence, in either case, the player achieves utility of at

least Ct/(2α2)− 2β/α.
Following the analysis used in the proof of Theorem 8.5, we have the result.

PROOF OF THEOREM 8.4. Consider the graph to be a long cycle with 2n nodes. For ease of
analysis, number the nodes 0 through 2n − 1 with the node numbered i have its neighbors
(i − 1) mod 2n and (i + 1) mod 2n. The optimal social welfare is 4n obtained by coloring all
even numbered nodes with red and the rest with blue.

Consider the sequence of nodes where nodes arrive in the increasing order 0 through 2n − 1.
We claim that through a series of undominated strategy plays on part of each player, the coloring
where node 2n− 1 is colored red and the rest colored blue is achievable. Note that this coloring
gives a social welfare of 4.

We now prove our claim. It is an undominated strategy for node 0 to choose the color blue.
Node 1 sees one of its neighbors colored blue and the other uncolored. It is an undominated
strategy for node 1 to choose color blue as well. This continues and each node until node 2n− 1
is colored blue. Node 2n − 1 has both its neighbors colored blue, and so the only undominated
strategy for her is to play red.
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