
Lecture Notes on
Sorting

15-122: Principles of Imperative Computation
Frank Pfenning

Lecture 7
February 1, 2011

1 Introduction

We have seen in the last lecture that sorted arrays drastically reduce the
time to search for an element when compared to unsorted arrays. Asymp-
totically, it is the difference between O(n) (linear time) and O(log(n)) (loga-
rithmic time), where n is the length of the input array. This suggests that it
may be important to establish this invariant, namely sorting a given array.
In practice, this is indeed the case: sorting is an important component of
many other data structures or algorithms.

There are many different algorithms for sorting: bucket sort, bubble
sort, insertion sort, selection sort, heap sort, This is testimony to the
importance and complexity of the problem, despite its apparent simplicity.

In this lecture we discuss two particularly important sorting algorithms:
mergesort and quicksort. Last semester’s course instance used mergesort
as its main example of efficient sorting algorithms; this time we will use
quicksort, giving only a high level overview of mergesort.

Both mergesort and quicksort are examples of divide-and-conquer. We
divide a problem into simpler subproblems that can be solved indepen-
dently and then combine the solutions. As we have seen for binary search,
the ideal divide step breaks a problem into two of roughly equal size, be-
cause it means we need to divide only logarithmically many times before
we have a basic problem, presumable with an immediately answer. Merge-
sort achieves this, quicksort not quite, which presents an interesting trade-
off when considering which algorithm to chose for a particular class of ap-
plications.

LECTURE NOTES FEBRUARY 1, 2011

Sorting L7.2

Recall linear search for an element in an array, which is O(n). The
divide-and-conquer technique of binary search divides the array in half,
determines which half our element would have to be in, and then proceeds
with only that subarray. An interesting twist here is that we divide, but then
we need to conquer only a single new subproblem. So if the length of the
array is 2k and we divide it by two on each step, we need at most k itera-
tions. Since there is only a constant number of operations on each iteration,
the overall complexity is O(log(n)). As a side remark, if we divided the ar-
ray into 3 equal sections, the complexity would remain O(log(n)) because
3k = (2log2(3))k = 2log23∗k, so log2(n) and log3(n) only differ in a constant
factor, namely log2(3).

2 Mergesort

Let’s see how we can apply the divide-and-conquer technique to sorting.
How do we divide?

One simple idea is just to divide a given array in half and sort each
half independently. Then we are left with an array where the left half is
sorted and the right half is sorted. We then need to merge the two halves
into a single sorted array. This merge operation is a bit more complex so
we postpone its detailed discussion to the next section.

To implement the splitting of the array, we pass not only the array,
but the subrange we are operating on. We use a specification function
is_sorted(int[] A, int lower, int upper) to check that the segment
A[lower ..upper) is sorted.

The other question we have to consider is when can we stop? Obvi-
ously, the given range of the array is sorted already if it has size 0 or 1. This
leads to the following code:

void mergesort (int[] A, int lower, int upper)
//@requires 0 <= lower && lower <= upper && upper <= \length(A);
//@ensures is_sorted(A, lower, upper);
{
if (upper-lower <= 1) return;
else {
int mid = lower + (upper-lower)/2;
mergesort(A, lower, mid); //@assert is_sorted(A, lower, mid);
mergesort(A, mid, upper); //@assert is_sorted(A, mid, upper);
merge(A, lower, mid, upper);

LECTURE NOTES FEBRUARY 1, 2011

Sorting L7.3

}
}

This function is intended to modify the given segment of the input array
in place, rather than returning a new array. That is why the return type is
given as void, which means it does not actually return a result.

This is an example of recursion: a function (mergesort) calls itself on
a smaller argument. When we analyze such a function we should not try
to analyze how the function that we call proceeds recursively. Instead, we
reason about it using contracts.

1. We have to ascertain that the preconditions of the function we are
calling are satisfied.

2. We are allowed to assume that the postconditions of the function we
are calling are satisfied when it returns.

This applies no matter whether the call is recursive, like here, or not. In the
mergesort code above the precondition is easy to see. We have illustrated
the postcondition with two explicit @assert annotations.

Reasoning about recursive functions using their contracts is an excel-
lent illustration of computational thinking, separating the what (that is, the
contract) from the how (that is, the definition of the function). To analyze
the recursive call we only care about what the function does.

We also need to analyze the termination behavior of the function, verify-
ing that the recursive calls are on strictly smaller arguments. What smaller
means differs for different functions; here the size of the subrange of the
array is what decreases. The quantity upper − lower is divided by two for
each recursive call and is therefore smaller since it is always greater or equal
to 2. If it were less than 2 we would return immediately and not make a
recursive call.

3 Analysis of Merge

The merge function we used above has the following specification. We have
two consecutive segments of an array, both non-empty, and both sorted. We
guarantee that the union of the two segments is sorted after the merge. We
also specify (although this is not expressed in the contract) that the sorted
range must be a permutation of the same range when merge is called.

LECTURE NOTES FEBRUARY 1, 2011

Sorting L7.4

void merge(int[] A, int lower, int mid, int upper)
//@requires 0 <= lower && lower < mid && mid < upper && upper <= \length(A);
//@requires is_sorted(A, lower, mid) && is_sorted(A, mid, upper);
//@ensures is_sorted(A, lower, upper);
;

Here is the sketch of a linear-time (that is, O(upper − lower)) algorithm
for merge. We create a new temporary array of size upper − lower . Then
we compare the smallest elements of the two ranges we are trying to merge,
which must be leftmost in each range. We copy the smaller one of the two to
the new array, remove it from consideration, and continue. Eventually, one
of the two subranges must become empty. At this point, we just copy the
elements from the other, non-empty range without further comparisons.

Finally, we copy the temporary array back to the original array range,
where the result is expected.

Each element of the original array is copied, and each of these copies
requires at most one preceding comparison, so the asymptotic complexity
of the merge is O(upper − lower), the total size of the two subranges to
merge. We also need auxiliary space of the same size.

It is this use of auxiliary space which sometimes works against the use
of mergesort, even if we can arrange to use the same auxiliary space for all
the merge phases.

4 Analysis of Mergesort

Before we develop the code for merging, we now analyze the asymptotic
complexity of mergesort. As a reminder, here is mergesort:

void mergesort (int[] A, int lower, int upper)
//@requires 0 <= lower && lower <= upper && upper <= \length(A);
// modifies A;
//@ensures is_sorted(A, lower, upper);
{
if (upper-lower <= 1) return;
else {
int mid = lower + (upper-lower)/2;
mergesort(A, lower, mid); //@assert is_sorted(A, lower, mid);
mergesort(A, mid, upper); //@assert is_sorted(A, mid, upper);
merge(A, lower, mid, upper);

}

LECTURE NOTES FEBRUARY 1, 2011

Sorting L7.5

}

If we call mergesort with an range (upper − lower) of size n, it makes
recursive calls of size n/2, possibly rounding one or the other down. To
avoid special cases and rounding, we just assume that the original range n
is a power of 2. Let us draw the tree of recursive calls:

Total work
*O(n) O(n)

*O(n/2) *O(n/2) O(n)

*O(n/4) *O(n/4) *O(n/4) *O(n/4) O(n)
* * * * * * * * O(n)

When each pair of recursive calls returns, we have to perform a merge
operation which takes O(m), where m is the size of resulting sorted range.
For example, at the root node we need O(n) operations to perform the
merge. At the next level of recursion, both left and right subrange are of
size n/2, each requiring O(n/2) operations to merge, which means that the
second level in the tree is also O(n). At the next level subranges have size
O(n/4), but there are 4 of them, so again processing this layer requires O(n)
operations. Overall, there will be log(n) layers, each layer requiring a total
amount of work of O(n), leading to an overall complexity of O(n ∗ log(n)).

It turns out that this is theoretically optimal for certain classes of sorting
algorithms, namely those based on comparisons between elements.

5 Programming Merge∗

We now turn the algorithmic idea for merge into a program, using our
method of loop invariants. We start with the following fragment:

void merge(int[] A, int lower, int mid, int upper)
//@requires 0 <= lower && lower < mid && mid < upper && upper <= \length(A);
//@requires is_sorted(A, lower, mid) && is_sorted(A, mid, upper);
//@ensures is_sorted(A, lower, upper) && A == \old(A);
{

∗Bonus material not covered in lecture. Students are not responsible for this section.

LECTURE NOTES FEBRUARY 1, 2011

Sorting L7.6

int[] B = alloc_array(int, upper-lower);
int i = lower; int j = mid; int k = 0;
... ?? ...

}

We have allocated the auxiliary array B and declared and initialized
index variables i (traversing the left range A[lower ..mid)) and j (traversing
the right range A[mid ..upper)) and k (traversing the target array B). The
traversal ranges of these variables become loop invariants. The loop runs
as long as i and j are both in their proper range.

int i = lower; int j = mid; int k = 0;
while (i < mid && j < upper)
//@loop_invariant lower <= i && i <= mid;
//@loop_invariant mid <= j && j <= upper;
//@loop_invariant 0 <= k && k <= upper-lower;
{ ... ?? ... }

These invariants are quite weak: they do not express, for example, that
we expect the target range B[0..k) to be sorted. We return to refining the
invariants in the next section; for now let’s concentrate on the code as we
wrote it together in lecture.

We copy the smaller of A[i] and A[j] to B[k] and advance the appropri-
ate index i or j, as well as k.

int i = lower; int j = mid; int k = 0;
while (i < mid && j < upper)
//@loop_invariant lower <= i && i <= mid;
//@loop_invariant mid <= j && j <= upper;
//@loop_invariant 0 <= k && k <= upper-lower;
{
if (A[i] <= A[j]) {
B[k] = A[i]; i++;

} else {
B[k] = A[j]; j++;

}
k++;

}
//@assert i == mid || j == upper;

At the end of the loop we know that either i = mid or j = upper , because
one of the two tests i < mid or j < upper must have failed so we exited the
loop.

LECTURE NOTES FEBRUARY 1, 2011

Sorting L7.7

Now we need to copy the remaining elements in the source array A to
B. These are either the elements in A[i..mid) or the elements in A[j..upper).
Rather than testing this explicitly, just complete copying both ranges for i
and j. One of them will be empty, so one loop body will not be traversed.

while (i < mid) { B[k] = A[i]; i++; k++; }
while (j < upper) { B[k] = A[j]; j++; k++; }

Finally, we need to copy the temporary array B back into the right range of
A.

for (k = 0; k < upper-lower; k++) A[lower+k] = B[k];

Here is the complete function, missing some invariants.

LECTURE NOTES FEBRUARY 1, 2011

Sorting L7.8

void merge(int[] A, int lower, int mid, int upper)
//@requires 0 <= lower && lower < mid && mid < upper && upper <= \length(A);
//@requires is_sorted(A, lower, mid) && is_sorted(A, mid, upper);
//@ensures is_sorted(A, lower, upper);
{
int[] B = alloc_array(int, upper-lower);
int i = lower; int j = mid; int k = 0;
while (i < mid && j < upper)
//@loop_invariant lower <= i && i <= mid;
//@loop_invariant mid <= j && j <= upper;
//@loop_invariant 0 <= k && k <= upper-lower;
{
if (A[i] <= A[j]) {
B[k] = A[i]; i++;

} else {
B[k] = A[j]; j++;

}
k++;

}
//@assert i == mid || j == upper;
while (i < mid) { B[k] = A[i]; i++; k++; }
while (j < upper) { B[k] = A[j]; j++; k++; }
for (k = 0; k < upper-lower; k++)
A[lower+k] = B[k];

}

6 Strengthening the Invariants

The pre- and post-conditions in the code above look fine, but the loop
invariants are very weak. Reasoning through the first loop, the question
arises: how do we know that k will remain within the given bounds? The
reason is that we always increase either i or j (but never both) and k. There-
fore, k cannot change more than the range for i plus the range for j. How
can we make this precise as a loop invariant? Think about it before you
move on.

LECTURE NOTES FEBRUARY 1, 2011

Sorting L7.9

We observe that k is always equal to the sum of how far i and j have
advanced, that is, k = (i − lower) + (j − mid). Let’s replace the weak
invariant on k by this stronger one.

int i = lower; int j = mid; int k = 0;
while (i < mid && j < upper)
//@loop_invariant lower <= i && i <= mid;
//@loop_invariant mid <= j && j <= upper;
//@loop_invariant k == (i-lower)+(j-mid);
{

if (A[i] <= A[j]) {
B[k] = A[i]; i++;

} else {
B[k] = A[j]; j++;

}
k++;

}

Now it is easy to see that the invariant on k is preserved, because on each
iteration either i and k increase or j and k, keeping the equation in balance.
It also follows that the access to B[k] is in bounds, because of the bounds
on i and j and loop exit test: i and j start at lower and mid , which means
that k starts at 0. And they are bounded above by mid and upper , which
bounds k by (mid − lower) + (upper −mid) = upper − lower .

The same reasoning applies to the two residual loops after the main
iteration.

int i = lower; int j = mid; int k = 0;
while (i < mid && j < upper)
//@loop_invariant lower <= i && i <= mid;
//@loop_invariant mid <= j && j <= upper;
//@loop_invariant k == (i-lower)+(j-mid);
{
if (A[i] <= A[j]) {
B[k] = A[i]; i++;

} else {
B[k] = A[j]; j++;

}
k++;

}
//@assert i == mid || j == upper;

LECTURE NOTES FEBRUARY 1, 2011

Sorting L7.10

while (i < mid)
//@loop_invariant lower <= i && i <= mid;
//@loop_invariant k == (i-lower)+(j-mid);
{ B[k] = A[i]; i++; k++; }

while (j < upper)
//@loop_invariant mid <= j && j <= upper;
//@loop_invariant k == (i-lower)+(j-mid);
{ B[k] = A[j]; j++; k++; }

After both loops we know i = mid and j = upper , so k = upper − lower
and all elements of the target array A[0..upper − lower) have been filled.

The complete code as developed so far can be found in mergesort.c0.

7 Strengthening Loop Invariants Further

Perhaps the code above represents a good intermediate point. It is easy to
see that the loop invariants are preserved, and that they guarantee that all
array accesses are in bounds.

Still the loop invariants do not mention anything about why the result-
ing array B is sorted! Why is the range B[0..k) sorted on every iteration?
The reason is similar to what we saw in selection sort: the last element
B[k−1] is always smaller than both A[i] and A[j]. Since we copy the smaller
of the two to B[k], this invariant preserved, as is the fact that B[0..k) is
sorted. We also need to know that A[i..mid) and A[j..upper) are sorted, but
that follows from the fact that the original ranges are sorted. So we add:

int i = lower; int j = mid; int k = 0;
while (i < mid && j < upper)
//@loop_invariant lower <= i && i <= mid;
//@loop_invariant mid <= j && j <= upper;
//@loop_invariant k == (i-lower)+(j-mid);
//@loop_invariant is_sorted(B, 0, k);
//@loop_invariant is_sorted(A, i, mid) && is_sorted(A, j, upper);
/*@loop_invariant k == 0 || ((i == mid || B[k-1] <= A[i])

&& (j == upper || B[k-1] <= A[j])); @*/
{

if (A[i] <= A[j]) {
B[k] = A[i]; i++;

} else {
B[k] = A[j]; j++;

LECTURE NOTES FEBRUARY 1, 2011

http://www.cs.cmu.edu/~fp/courses/15122-s11/lectures/07-sorting/mergesort.c0

Sorting L7.11

}
k++;

}

In the following two loops, the reasons why B remains sorted are similar.

//@assert i == mid || j == upper;
while (i < mid)
//@loop_invariant lower <= i && i <= mid;
//@loop_invariant k == (i-lower)+(j-mid);
//@loop_invariant is_sorted(B, 0, k) && is_sorted(A, i, mid);
//@loop_invariant k == 0 || i == mid || B[k-1] <= A[i];
{ B[k] = A[i]; i++; k++; }

while (j < upper)
//@loop_invariant mid <= j && j <= upper;
//@loop_invariant k == (i-lower)+(j-mid);
//@loop_invariant is_sorted(B, 0, k) && is_sorted(A, j, upper);
//@loop_invariant k == 0 || j == upper || B[k-1] <= A[j];
{ B[k] = A[j]; j++; k++; }

Because i = mid or j = upper , only one of these loop will execute and
therefore, finally, the array B[0..upper − lower) will be sorted.

We see that the computation is relatively straightforward, but the rea-
son for its correctness is somewhat complicated, if it is made explicit. It is a
matter of taste and experience how much of the reasons one makes explicit
in the invariants.

LECTURE NOTES FEBRUARY 1, 2011

Sorting L7.12

void merge(int[] A, int lower, int mid, int upper)
//@requires 0 <= lower && lower < mid && mid < upper && upper <= \length(A);
//@requires is_sorted(A, lower, mid) && is_sorted(A, mid, upper);
//@ensures is_sorted(A, lower, upper);
{
int[] B = alloc_array(int, upper-lower);
int i = lower; int j = mid; int k = 0;
while (i < mid && j < upper)
//@loop_invariant lower <= i && i <= mid;
//@loop_invariant mid <= j && j <= upper;
//@loop_invariant k == (i-lower)+(j-mid);
//@loop_invariant is_sorted(B, 0, k);
//@loop_invariant is_sorted(A, i, mid) && is_sorted(A, j, upper);
/*@loop_invariant k == 0 || ((i == mid || B[k-1] <= A[i])

&& (j == upper || B[k-1] <= A[j])); @*/
{
if (A[i] <= A[j]) {
B[k] = A[i]; i++;

} else {
B[k] = A[j]; j++;

}
k++;

}
//@assert i == mid || j == upper;
while (i < mid)
//@loop_invariant lower <= i && i <= mid && k == (i-lower)+(j-mid);
//@loop_invariant is_sorted(B, 0, k) && is_sorted(A, i, mid);
//@loop_invariant k == 0 || i == mid || B[k-1] <= A[i];
{ B[k] = A[i]; i++; k++; }

while (j < upper)
//@loop_invariant mid <= j && j <= upper && k == (i-lower)+(j-mid);
//@loop_invariant is_sorted(B, 0, k) && is_sorted(A, j, upper);
//@loop_invariant k == 0 || j == upper || B[k-1] <= A[j];
{ B[k] = A[j]; j++; k++; }

//@assert k == upper-lower && is_sorted(B, 0, upper-lower);
for (k = 0; k < upper-lower; k++)
//@loop_invariant lower <= lower+k && lower+k <= upper;
A[lower+k] = B[k];

}

LECTURE NOTES FEBRUARY 1, 2011

Sorting L7.13

Here, we have omitted the precise reasoning on why A[lower ..upper) is
sorted after the copy operation, because it is evidently a copy of B which is
known to be sorted.

It also emerges that it might have been easier, from the specification per-
spective, to have just one loop instead of three. We leave such a rephrasing
as an exercise. The complete code as developed above can be found in
mergesort-invs.c0.

LECTURE NOTES FEBRUARY 1, 2011

http://www.cs.cmu.edu/~fp/courses/15122-s11/lectures/07-sorting/mergesort-invs.c0

	Introduction
	Mergesort
	Analysis of Merge
	Analysis of Mergesort
	Programming Merge*
	Strengthening the Invariants
	Strengthening Loop Invariants Further

