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Introduction

Introduction

I You will be compiling and running code on Andrew Linux.

I Need familiarity with a *nix command line interface.

I Get one by opening a terminal.

I Alternately, get one via a secure shell connection (later).
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Command Line Shells

CLI vs GUI

I Consists of a shell which accepts textual input from the user.

I Shell is a Read-Evaluate Loop.

I Predates GUIs.

I Easier to design and automate.

I We will be testing your programs using the command line.

I Still widely preferred for logging in via network.
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Command Line Shells

Available shells

I Input can be a program written in the shell’s programming
language.

I Many different shells. Many different languages.

I All execute commands like:
command [arg1] ... [arg n]

I For example, this says what shell you use:
> ps -p $$

I We can use bash or csh.

I Use chsh to change shell.
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Navigating the File System

Context: *nix File System

I *nix file system is part of the shell’s context.

I Hierarchical filesystem.
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Navigating the File System

Paths

I Dirs or Files identified by absolute path or relative path.

I Absolute path begins with /.

I Shell has a Current Working Directory:
> pwd

I Relative path is offset from pwd.

I .. refers to the directory containing the current working
directory.

I ˜is short-hand for your home directory’s absolute path.

I ˜username can be used for home-dir of any user.

I . is short hand for current working directory’s absolute path.
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Navigating the File System

Practice: cd, ls, etc..

I cd: change working directory

I ls: list contents of directory

I mkdir: make directory

I touch: “touch” a file

I cp: copy file or directory

I mv: move/rename file or directory

I rm: remove file or directory (caution)

I echo: print to stdout

I cat: dump file to screen

I less: view part of file
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Navigating the File System

Getting help: Dog’s best friend

I Many commands accept -h or --help as an argument.

I Manual Pages:
man command

I Example:
> man ls

I Info pages: some commands have these. Relatively
uncommon.

I Practice navigating a few man pages.
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Paths containing executables

which command?

I Some commands are shell intrinsics. Most are executables in
the filesystem.

I Shell searches the paths stored in an Environment Variable
called PATH.

I Alternately, name executables using absolute path. Example:
> /bin/ls

> ./bin in my current working dir

I Which executable are you using?
> which cd

> which which

I Not very nice if the path gets corrupted, is it?
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Paths containing executables

The Shell Config File

I Need to add 15-122 commands to executable paths.

I Need to edit shell config file.

I Need a text editor! (Try emacs or vi)

I Open your shell’s config file:
> emacs ~/.bashrc

> emacs ~/.cshrc
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Paths containing executables

The PATH variable

I Add the following to your config file:
setenv PATH

${PATH}:/afs/andrew/course/15/122/bin/ #csh

export

PATH=${PATH}:/afs/andrew/course/15/122/bin/ #bash

I Reload config:
csh> source ~/.cshrc

bash> source ~/.bashrc

I Confirm with:
csh> env

bash> echo ${PATH}
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File Permissions

Unix Permissions

I Unix security model has users which belong to groups.

I Each file has a distinguished owning user and owning group.

I Additionally, each file has permission bits.

I Useful commands: chmod, chown, chgrp.

I Example of permissions matrix:
Read Execute Write SUID SGID Sticky

User 1 1 1 ... ... ...

Group 1 1 0 ... ... ...

Others 1 0 0 ... ... ...
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File Permissions

AFS Permissions

I AFS maintains separate permissions for each user and each
directory.

I fs la and fs sa are your friends.

I Exercise: how do you find more info about the fs command?

I Examples:
> fs la ~/public

> fs la ~/private

I All work is done individually in this class. Store it in
˜/private.
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Network Login

Secure Shell Connection

I Windows users: Download and install PuTTy

I Connect to Andrew Linux machines using andrew ID and
password on port 22.

I Addresses of servers: unix.andrew.cmu.edu

linux.andrew.cmu.edu

ghcNN.ghc.andrew.cmu.edu

I *nix and Mac OS users can use the terminal:
> ssh andrewID@unix.andrew.cmu.edu
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Network Login

Copying files over the network

I If you like, you can also work on your computer and copy files
to andrew machines.

I *nix and Mac OS: use scp:
> scp local path

user@example.address:path on remote host

> scp user@example.address:path on remote host

local path

I On Windows, PuTTy provides pscp which can be used from
the command prompt and works the same way.

I Mind your back-slashes and forward-slashes.
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Emacs and C0 code

Learn ye some emacs and c0

I But first, we need to configure emacs:
> emacs ~/.emacs

I Append the following lines:
(setq c0-root "/afs/andrew/course/15/122/")

(load (concat c0-root "c0-mode/c0.el"))

And let the fun begin!
> emacs fact.c0
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Emacs and C0 code

Ye Olde Factorial Functionne: Recursive Definition

1 // What i s m i s s i n g ?
2 i n t f a c t 1 ( i n t x )
3 {
4 i f ( x == 0) {
5 r e t u r n 1 ;
6 } e l s e {
7 r e t u r n x ∗ f a c t 1 ( x − 1 ) ;
8 }
9 }
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Emacs and C0 code

Factorial not defined for negative numbers!

1 i n t f a c t 1 ( i n t x )
2 // @ r e q u i r e s x >= 0 ;
3 {
4 i f ( x == 0) {
5 r e t u r n 1 ;
6 } e l s e {
7 r e t u r n x ∗ f a c t 1 ( x − 1 ) ;
8 }
9 }

> rlwrap coin fact.c0 -d



The Unix Command-Line and C0

Emacs and C0 code

Factorial: An Equivalent Specification

1 i n t f a c t 2 ( i n t x )
2 // @ r e q u i r e s x >= 0 ;
3 {
4 r e t u r n x == 0 ? 1 : x ∗ f a c t 2 ( x − 1 ) ;
5 }

This uses the ternary operator. Compact and useful when the
branches of the if-else statement evaluate a single expression each.
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Emacs and C0 code

What if loops are faster than recursive functions?
This is not necessarily true, but let’s implement factorial with loops
for the sake of the argument:

1 i n t f a c t 3 ( i n t x )
2 // @ r e q u i r e s x >= 0 ;
3 // @ensure s \ r e s u l t == f a c t 1 ( x ) ;
4 {
5 i n t r = 1 ;
6 whi le ( x > 0)
7 // @ l o o p i n v a r i a n t . . . . ;
8 {
9 r = r ∗ x ;

10 x−−; /∗ sho r thand f o r x = x − 1 ∗/
11 }
12
13 r e t u r n r ;
14 }

Exercise: what is the loop invariant expressions?
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Emacs and C0 code

Another way of writing it?

1 i n t f a c t 4 ( i n t x )
2 // @ r e q u i r e s x >= 0 ;
3 // @ensure s \ r e s u l t == f a c t 1 ( x ) ;
4 {
5 i n t r = 1 ;
6
7 f o r ( i n t i = x ; i > 0 ; i −−)
8 // @ l o o p i n v a r i a n t . . . .
9 {

10 r = r ∗ i ;
11 }
12 // @a s s e r t i == 0 ;
13
14 r e t u r n r ;
15 }

What is wrong?
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Emacs and C0 code

Induction variable is out of scope!
The assertion can’t inspect i . Let us fix it:

1 i n t f a c t 4 ( i n t x )
2 // @ r e q u i r e s x >= 0 ;
3 // @ensure s \ r e s u l t == f a c t 1 ( x ) ;
4 {
5 i n t r = 1 ;
6 i n t i ; /∗ i n d u c t i o n v a r i a b l e ∗/
7
8 f o r ( i = x ; i > 0 ; i −−)
9 // @ l o o p i n v a r i a n t . . . . ;

10 {
11 r = r ∗ i ;
12 }
13 // @a s s e r t i == 0 ;
14
15 r e t u r n r ;
16 }
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Emacs and C0 code

Factorial: Summary

I Four types of contracts: requires, ensures,
loop invariant and assert

I Logically: loop invariant is a pre-condition and
post-condition of the entire loop and each iteration of the
loop.

I Operationally: loop invariant gets checked every time the
loop header is evaluated, regardless of whether the test
succeeds or fails, and at loop exits.

I Caution: loop invariant will be checked even if the loop is
never entered!

I for loops are idiomatic, but beware of scoping.

I i is called the loop induction variable. Some relation to
mathematical induction?
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Emacs and C0 code

Resources:

I http://c0.typesafety.net/
This page has links to:

I The C0 language reference, if you have questions about
syntax, the semantics of operators, the type system, etc.

I The C0 library reference: this documents functions that we
provide (such as console IO and file IO).

I A C0 tutorial written by friends of the course.

I man pages, if you are uncertain of the behavior of shell
commands.

I office hours:
I General: Monday and Friday, 3:00-4:20PM, GHC5206
I Anand <asubrama@andrew.cmu.edu>: Monday, 1:30-2:30,

GHC 9th floor kitchenette
I Kristina <ksojakov@cs.cmu.edu>: Tuesday, 4:20-5:20, GHC

6603


