
The Unix Command-Line and C0

The Unix Command-Line and C0

Anand Subramanian
<asubrama@andrew.cmu.edu>

May 21, 2012

The Unix Command-Line and C0

Introduction

Introduction

I You will be compiling and running code on Andrew Linux.

I Need familiarity with a *nix command line interface.

I Get one by opening a terminal.

I Alternately, get one via a secure shell connection (later).

The Unix Command-Line and C0

Command Line Shells

CLI vs GUI

I Consists of a shell which accepts textual input from the user.

I Shell is a Read-Evaluate Loop.

I Predates GUIs.

I Easier to design and automate.

I We will be testing your programs using the command line.

I Still widely preferred for logging in via network.

The Unix Command-Line and C0

Command Line Shells

Available shells

I Input can be a program written in the shell’s programming
language.

I Many different shells. Many different languages.

I All execute commands like:
command [arg1] ... [arg n]

I For example, this says what shell you use:
> ps -p $$

I We can use bash or csh.

I Use chsh to change shell.

The Unix Command-Line and C0

Command Line Shells

Available shells

I Input can be a program written in the shell’s programming
language.

I Many different shells. Many different languages.

I All execute commands like:
command [arg1] ... [arg n]

I For example, this says what shell you use:
> ps -p $$

I We can use bash or csh.

I Use chsh to change shell.

The Unix Command-Line and C0

Command Line Shells

Available shells

I Input can be a program written in the shell’s programming
language.

I Many different shells. Many different languages.

I All execute commands like:
command [arg1] ... [arg n]

I For example, this says what shell you use:
> ps -p $$

I We can use bash or csh.

I Use chsh to change shell.

The Unix Command-Line and C0

Navigating the File System

Context: *nix File System

I *nix file system is part of the shell’s context.

I Hierarchical filesystem.

The Unix Command-Line and C0

Navigating the File System

Paths

I Dirs or Files identified by absolute path or relative path.

I Absolute path begins with /.

I Shell has a Current Working Directory:
> pwd

I Relative path is offset from pwd.

I .. refers to the directory containing the current working
directory.

I ˜is short-hand for your home directory’s absolute path.

I ˜username can be used for home-dir of any user.

I . is short hand for current working directory’s absolute path.

The Unix Command-Line and C0

Navigating the File System

Paths

I Dirs or Files identified by absolute path or relative path.

I Absolute path begins with /.

I Shell has a Current Working Directory:
> pwd

I Relative path is offset from pwd.

I .. refers to the directory containing the current working
directory.

I ˜is short-hand for your home directory’s absolute path.

I ˜username can be used for home-dir of any user.

I . is short hand for current working directory’s absolute path.

The Unix Command-Line and C0

Navigating the File System

Practice: cd, ls, etc..

I cd: change working directory

I ls: list contents of directory

I mkdir: make directory

I touch: “touch” a file

I cp: copy file or directory

I mv: move/rename file or directory

I rm: remove file or directory (caution)

I echo: print to stdout

I cat: dump file to screen

I less: view part of file

The Unix Command-Line and C0

Navigating the File System

Getting help: Dog’s best friend

I Many commands accept -h or --help as an argument.

I Manual Pages:
man command

I Example:
> man ls

I Info pages: some commands have these. Relatively
uncommon.

I Practice navigating a few man pages.

The Unix Command-Line and C0

Paths containing executables

which command?

I Some commands are shell intrinsics. Most are executables in
the filesystem.

I Shell searches the paths stored in an Environment Variable
called PATH.

I Alternately, name executables using absolute path. Example:
> /bin/ls

> ./bin in my current working dir

I Which executable are you using?
> which cd

> which which

I Not very nice if the path gets corrupted, is it?

The Unix Command-Line and C0

Paths containing executables

The Shell Config File

I Need to add 15-122 commands to executable paths.

I Need to edit shell config file.

I Need a text editor! (Try emacs or vi)

I Open your shell’s config file:
> emacs ~/.bashrc

> emacs ~/.cshrc

The Unix Command-Line and C0

Paths containing executables

The Shell Config File

I Need to add 15-122 commands to executable paths.

I Need to edit shell config file.

I Need a text editor! (Try emacs or vi)

I Open your shell’s config file:
> emacs ~/.bashrc

> emacs ~/.cshrc

The Unix Command-Line and C0

Paths containing executables

The PATH variable

I Add the following to your config file:
setenv PATH

${PATH}:/afs/andrew/course/15/122/bin/ #csh

export

PATH=${PATH}:/afs/andrew/course/15/122/bin/ #bash

I Reload config:
csh> source ~/.cshrc

bash> source ~/.bashrc

I Confirm with:
csh> env

bash> echo ${PATH}

The Unix Command-Line and C0

Paths containing executables

The PATH variable

I Add the following to your config file:
setenv PATH

${PATH}:/afs/andrew/course/15/122/bin/ #csh

export

PATH=${PATH}:/afs/andrew/course/15/122/bin/ #bash

I Reload config:
csh> source ~/.cshrc

bash> source ~/.bashrc

I Confirm with:
csh> env

bash> echo ${PATH}

The Unix Command-Line and C0

Paths containing executables

The PATH variable

I Add the following to your config file:
setenv PATH

${PATH}:/afs/andrew/course/15/122/bin/ #csh

export

PATH=${PATH}:/afs/andrew/course/15/122/bin/ #bash

I Reload config:
csh> source ~/.cshrc

bash> source ~/.bashrc

I Confirm with:
csh> env

bash> echo ${PATH}

The Unix Command-Line and C0

File Permissions

Unix Permissions

I Unix security model has users which belong to groups.

I Each file has a distinguished owning user and owning group.

I Additionally, each file has permission bits.

I Useful commands: chmod, chown, chgrp.

I Example of permissions matrix:
Read Execute Write SUID SGID Sticky

User 1 1 1

Group 1 1 0

Others 1 0 0

The Unix Command-Line and C0

File Permissions

Unix Permissions

I Unix security model has users which belong to groups.

I Each file has a distinguished owning user and owning group.

I Additionally, each file has permission bits.

I Useful commands: chmod, chown, chgrp.

I Example of permissions matrix:
Read Execute Write SUID SGID Sticky

User 1 1 1

Group 1 1 0

Others 1 0 0

The Unix Command-Line and C0

File Permissions

AFS Permissions

I AFS maintains separate permissions for each user and each
directory.

I fs la and fs sa are your friends.

I Exercise: how do you find more info about the fs command?

I Examples:
> fs la ~/public

> fs la ~/private

I All work is done individually in this class. Store it in
˜/private.

The Unix Command-Line and C0

File Permissions

AFS Permissions

I AFS maintains separate permissions for each user and each
directory.

I fs la and fs sa are your friends.

I Exercise: how do you find more info about the fs command?

I Examples:
> fs la ~/public

> fs la ~/private

I All work is done individually in this class. Store it in
˜/private.

The Unix Command-Line and C0

File Permissions

AFS Permissions

I AFS maintains separate permissions for each user and each
directory.

I fs la and fs sa are your friends.

I Exercise: how do you find more info about the fs command?

I Examples:
> fs la ~/public

> fs la ~/private

I All work is done individually in this class. Store it in
˜/private.

The Unix Command-Line and C0

File Permissions

AFS Permissions

I AFS maintains separate permissions for each user and each
directory.

I fs la and fs sa are your friends.

I Exercise: how do you find more info about the fs command?

I Examples:
> fs la ~/public

> fs la ~/private

I All work is done individually in this class. Store it in
˜/private.

The Unix Command-Line and C0

Network Login

Secure Shell Connection

I Windows users: Download and install PuTTy

I Connect to Andrew Linux machines using andrew ID and
password on port 22.

I Addresses of servers: unix.andrew.cmu.edu

linux.andrew.cmu.edu

ghcNN.ghc.andrew.cmu.edu

I *nix and Mac OS users can use the terminal:
> ssh andrewID@unix.andrew.cmu.edu

The Unix Command-Line and C0

Network Login

Copying files over the network

I If you like, you can also work on your computer and copy files
to andrew machines.

I *nix and Mac OS: use scp:
> scp local path

user@example.address:path on remote host

> scp user@example.address:path on remote host

local path

I On Windows, PuTTy provides pscp which can be used from
the command prompt and works the same way.

I Mind your back-slashes and forward-slashes.

The Unix Command-Line and C0

Emacs and C0 code

Learn ye some emacs and c0

I But first, we need to configure emacs:
> emacs ~/.emacs

I Append the following lines:
(setq c0-root "/afs/andrew/course/15/122/")

(load (concat c0-root "c0-mode/c0.el"))

And let the fun begin!
> emacs fact.c0

The Unix Command-Line and C0

Emacs and C0 code

Ye Olde Factorial Functionne: Recursive Definition

1 // What i s m i s s i n g ?
2 i n t f a c t 1 (i n t x)
3 {
4 i f (x == 0) {
5 r e t u r n 1 ;
6 } e l s e {
7 r e t u r n x ∗ f a c t 1 (x − 1) ;
8 }
9 }

The Unix Command-Line and C0

Emacs and C0 code

Factorial not defined for negative numbers!

1 i n t f a c t 1 (i n t x)
2 // @ r e q u i r e s x >= 0 ;
3 {
4 i f (x == 0) {
5 r e t u r n 1 ;
6 } e l s e {
7 r e t u r n x ∗ f a c t 1 (x − 1) ;
8 }
9 }

> rlwrap coin fact.c0 -d

The Unix Command-Line and C0

Emacs and C0 code

Factorial: An Equivalent Specification

1 i n t f a c t 2 (i n t x)
2 // @ r e q u i r e s x >= 0 ;
3 {
4 r e t u r n x == 0 ? 1 : x ∗ f a c t 2 (x − 1) ;
5 }

This uses the ternary operator. Compact and useful when the
branches of the if-else statement evaluate a single expression each.

The Unix Command-Line and C0

Emacs and C0 code

What if loops are faster than recursive functions?
This is not necessarily true, but let’s implement factorial with loops
for the sake of the argument:

1 i n t f a c t 3 (i n t x)
2 // @ r e q u i r e s x >= 0 ;
3 // @ensure s \ r e s u l t == f a c t 1 (x) ;
4 {
5 i n t r = 1 ;
6 whi le (x > 0)
7 // @ l o o p i n v a r i a n t ;
8 {
9 r = r ∗ x ;

10 x−−; /∗ sho r thand f o r x = x − 1 ∗/
11 }
12
13 r e t u r n r ;
14 }

Exercise: what is the loop invariant expressions?

The Unix Command-Line and C0

Emacs and C0 code

Another way of writing it?

1 i n t f a c t 4 (i n t x)
2 // @ r e q u i r e s x >= 0 ;
3 // @ensure s \ r e s u l t == f a c t 1 (x) ;
4 {
5 i n t r = 1 ;
6
7 f o r (i n t i = x ; i > 0 ; i −−)
8 // @ l o o p i n v a r i a n t
9 {

10 r = r ∗ i ;
11 }
12 // @a s s e r t i == 0 ;
13
14 r e t u r n r ;
15 }

What is wrong?

The Unix Command-Line and C0

Emacs and C0 code

Induction variable is out of scope!
The assertion can’t inspect i . Let us fix it:

1 i n t f a c t 4 (i n t x)
2 // @ r e q u i r e s x >= 0 ;
3 // @ensure s \ r e s u l t == f a c t 1 (x) ;
4 {
5 i n t r = 1 ;
6 i n t i ; /∗ i n d u c t i o n v a r i a b l e ∗/
7
8 f o r (i = x ; i > 0 ; i −−)
9 // @ l o o p i n v a r i a n t ;

10 {
11 r = r ∗ i ;
12 }
13 // @a s s e r t i == 0 ;
14
15 r e t u r n r ;
16 }

The Unix Command-Line and C0

Emacs and C0 code

Factorial: Summary

I Four types of contracts: requires, ensures,
loop invariant and assert

I Logically: loop invariant is a pre-condition and
post-condition of the entire loop and each iteration of the
loop.

I Operationally: loop invariant gets checked every time the
loop header is evaluated, regardless of whether the test
succeeds or fails, and at loop exits.

I Caution: loop invariant will be checked even if the loop is
never entered!

I for loops are idiomatic, but beware of scoping.

I i is called the loop induction variable. Some relation to
mathematical induction?

The Unix Command-Line and C0

Emacs and C0 code

Resources:

I http://c0.typesafety.net/
This page has links to:

I The C0 language reference, if you have questions about
syntax, the semantics of operators, the type system, etc.

I The C0 library reference: this documents functions that we
provide (such as console IO and file IO).

I A C0 tutorial written by friends of the course.

I man pages, if you are uncertain of the behavior of shell
commands.

I office hours:
I General: Monday and Friday, 3:00-4:20PM, GHC5206
I Anand <asubrama@andrew.cmu.edu>: Monday, 1:30-2:30,

GHC 9th floor kitchenette
I Kristina <ksojakov@cs.cmu.edu>: Tuesday, 4:20-5:20, GHC

6603

